首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ischemic preconditioning, insulin, and morphine all cause hexokinase redistribution
Authors:Zuurbier Coert J  Eerbeek Otto  Meijer Alfred J
Institution:Dept. of Anesthesiology, Academic Medical Center, Univ. of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands. c.j.zuurbier@amc.uva.nl
Abstract:Association of hexokinase (HK) with mitochondria preserves mitochondrial integrity and is an important mechanism by which cancer cells are protected against hypoxic conditions. Maintenance of mitochondrial integrity also figures prominently as a major characteristic of many cardioprotective manipulations. In this study, we provide evidence that cardioprotective interventions may promote HK redistribution from the cytosol to the mitochondria in the heart. Isolated Langendorff-perfused rat hearts (n = 6/group) were subjected to normoxic perfusion (control, Con), three 5-min ischemia-reperfusion periods (ischemic preconditioning, IPC), 1 U/l insulin (Ins), or 1 microM morphine (Mor). Hearts were immediately homogenized and centrifuged to obtain whole cell, cytosolic, and mitochondrial fractions. HK, lactate dehydrogenase (LDH), and citrate synthase (CS) enzyme activities were determined. No change in LDH or CS present in the cytosol fraction relative to whole cell activity was observed with any of the cardioprotective interventions. By contrast, HK present in the cytosol fraction relative to whole cell activity decreased significantly (P < 0.05) with all cardioprotective interventions, from 0.58 +/- 0.03 (Con) to 0.46 +/- 0.04 (IPC), 0.41 +/- 0.01 (Ins), and 0.45 +/- 0.02 (Mor). In addition, HK relative to CS activity in the mitochondrial fraction increased significantly with cardioprotection, from 0.15 +/- 0.001 (Con) to 0.21 +/- 0.002 (IPC), 0.18 +/- 0.003 (Ins), and 0.21 +/- 0.005 (Mor). Our novel data suggest that well-known cardioprotective interventions share a common end-effector mechanism of cytosolic HK translocation. Association of HK with mitochondria may promote inhibition of the mitochondrial permeability transition pore and thereby reduce cell death and apoptosis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号