首页 | 本学科首页   官方微博 | 高级检索  
     


MbtH homology codes to identify gifted microbes for genome mining
Authors:Richard H. Baltz
Affiliation:1. CognoGen Biotechnology Consulting, 7636 Andora Drive, Sarasota, FL, 34238, USA
Abstract:Advances in DNA sequencing technologies have made it possible to sequence large numbers of microbial genomes rapidly and inexpensively. In recent years, genome sequencing initiatives have demonstrated that actinomycetes with large genomes generally have the genetic potential to produce many secondary metabolites, most of which remain cryptic. Since the numbers of new and novel pathways vary considerably among actinomycetes, and the correct assembly of secondary metabolite pathways containing type I polyketide synthase or nonribosomal peptide synthetase (NRPS) genes is costly and time consuming, it would be advantageous to have simple genetic predictors for the number and potential novelty of secondary metabolite pathways in targeted microorganisms. For secondary metabolite pathways that utilize NRPS mechanisms, the small chaperone-like proteins related to MbtH encoded by Mycobacterium tuberculosis offer unique probes or beacons to identify gifted microbes encoding large numbers of diverse NRPS pathways because of their unique function(s) and small size. The small size of the mbtH-homolog genes makes surveying large numbers of genomes straight-forward with less than ten-fold sequencing coverage. Multiple MbtH orthologs and paralogs have been coupled to generate a 24-mer multiprobe to assign numerical codes to individual MbtH homologs by BLASTp analysis. This multiprobe can be used to identify gifted microbes encoding new and novel secondary metabolites for further focused exploration by extensive DNA sequencing, pathway assembly and annotation, and expression studies in homologous or heterologous hosts.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号