首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Oleoyl-oestrone inhibits lipogenic, but maintains thermogenic, gene expression of brown adipose tissue in overweight rats
Authors:Romero María del Mar  Fernández-López José A  Esteve Montserrat  Alemany Marià
Institution:Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain.
Abstract:In the present study we intended to determine how BAT (brown adipose tissue) maintained thermogenesis under treatment with OE (oleoyl-oestrone), a powerful slimming hormone that sheds off body lipid but maintains the metabolic rate. Overweight male rats were subjected to daily gavages of 10 nmol/g of OE or vehicle (control) for 10 days. A PF (pair-fed) vehicle-receiving group was used to discount the effects attributable to energy availability limitation. Interscapular BAT mass, lipid, DNA, mRNA and the RT-PCR (real-time PCR) expression of lipid and energy metabolism genes for enzymes and regulatory proteins were measured. BAT mass and lipid were decreased in OE and PF, with the latter showing a marked reduction in tissue mRNA. Maintenance of perilipin gene expression in PF and OE rats despite the loss of lipid suggests the preservation of the vacuolar interactive surface, a critical factor for thermogenic responsiveness. OE and, to a lesser extent, PF maintained the expression of genes controlling lipolysis and fatty acid oxidation, but markedly decreased the expression of those genes involved in lipogenic and acyl-glycerol synthesis. OE did not affect UCP1 (uncoupling protein 1) (decreased in PF), beta(3) adrenergic receptors or hormone-sensitive lipase gene mRNAs, which may translate in maintaining a full thermogenic system potential. OE rats were able to maintain a less energetically stressed BAT (probably through glucose utilization) than PF rats. These changes were not paralleled in PF rats, in which lower thermogenesis and glucose preservation resulted in a heavier toll on internal fat stores. Thus the mechanism of action of OE is more complex and tissue-specific than previously assumed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号