Involvement of histidine residues in proton sensing of ROMK1 channel |
| |
Authors: | Chanchevalap S Yang Z Cui N Qu Z Zhu G Liu C Giwa L R Abdulkadir L Jiang C |
| |
Affiliation: | Department of Biology, Georgia State University, Atlanta, Georgia 30302-4010, USA. |
| |
Abstract: | ROMK channels are inhibited by intracellular acidification. This pH sensitivity is related to several amino acid residues in the channel proteins such as Lys-61, Thr-51, and His-206 (in ROMK2). Unlike all other amino acids, histidine is titratable at pH 6-7 carrying a positive charge below pH 6. To test the hypothesis that certain histidine residues are engaged in CO(2) and pH sensing of ROMK1, we performed experiments by systematic mutations of all histidine residues in the channel using the site-directed mutagenesis. There are two histidine residues in the N terminus. Mutations of His-23, His-31, or both together did not affect channel sensitivity to CO(2). Six histidine residues are located in the C terminus. His-225, His-274, His-342, and His-354 were critical in CO(2) and pH sensing. Mutation of either of them reduced CO(2) and pH sensitivities by 20-50% and approximately 0.2 pH units, respectively. Simultaneous mutations of all of them eliminated the CO(2) sensitivity and caused this mutant channel to respond to only extremely acidic pH. Similar mutations of His-280 had no effect. The role of His-270 in CO(2) and pH sensing is unclear, because substitutions of this residue with either a neutral, negative, or positive amino acid did not produce any functional channel. These results therefore indicate that histidine residues contribute to the sensitivity of the ROMK1 channel to hypercapnia and intracellular acidosis. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|