首页 | 本学科首页   官方微博 | 高级检索  
     


Solving the structure of PTB in complex with pyrimidine tracts: an NMR study of protein-RNA complexes of weak affinities
Authors:Auweter Sigrid D  Oberstrass Florian C  Allain Frédéric H-T
Affiliation:Institute for Molecular Biology and Biophysics, ETH Zürich, CH-8093 Zürich, Switzerland; Molecular Life Science PhD Program, Zürich, Switzerland.
Abstract:NMR spectroscopy has proven to be a powerful tool for the structure determination of protein/RNA complexes. However, the quality of these structures depends critically on the number of unambiguous intermolecular and intra-RNA nuclear Overhauser effect (NOE) constraints that can be derived. This number is often limited due to exchange phenomena that can cause signal line broadening and the fact that unambiguous NOE assignments are challenging in systems that exchange between different conformations in the intermediate to fast exchange limit. These exchange processes can include exchange between free and bound form, as well as exchange of the ligand between different binding sites on the protein. Furthermore, for the large class of RNA metabolizing proteins that bind repetitive low-complexity RNA sequences in multiple register, exchange of the protein between these overlapping binding sites introduces additional exchange pathways. Here, we describe the strategy we used to overcome these exchange processes and to reduce significantly the line width of the RNA resonances in complexes of the RNA recognition motifs (RRMs) of the polypyrimidine tract-binding protein (PTB) in complex with pyrimidine tracts and hence allowed a highly precise structure determination. This method could be employed to derive structures of other protein/single-stranded nucleic acid complexes by NMR spectroscopy. Furthermore, we have determined the affinities of the individual RRMs of PTB for pyrimidine tracts of different length and sequence. These measurements show that PTB binds preferentially to long pyrimidine tracts that contain cytosine and hence confirm the structure of PTB in complex with RNA. Furthermore, they provide quantitative insight into the question of which pyrimidine sequences within alternatively spliced pre-mRNAs will be preferentially bound by PTB.
Keywords:RRM, RNA recognition motif   PTB, polypyrimidine tract-binding protein   NOE, nuclear Overhauser effect   NOESY, NOE, spectroscopy   HSQC, heteronuclear single quantum coherence
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号