Respiration of turions and winter apices in aquatic carnivorous plants |
| |
Authors: | Lubomír Adamec |
| |
Affiliation: | (1) Institute of Botany of the Academy of Sciences of the Czech Republic, Section of Plant Ecology, Dukelská 135, CZ-37982 Treboň, Czech Republic |
| |
Abstract: | Basic respiration characteristics were measured in turions of six aquatic plant species differing greatly in their ecological and overwintering characteristics both before and after overwintering, i.e., in dormant and non-dormant state: non-carnivorous Hydrocharis morsus-ranae and Caldesia parnassifolia and carnivorous Aldrovanda vesiculosa, Utricularia australis, U. ochroleuca, and U. bremii, and in non-dormant winter apices of three Australian (sub)tropical populations of Aldrovanda and of two temperate North American Utricularia species, U. purpurea and U. radiata. Respiration rate of autumnal (dormant) turions at 20°C ranged from 0.36 to 1.3 μmol O2 kg−1 (FM) s−1 and, except for U. bremii, increased by 11–114% after overwintering. However, this increase was statistically significant only in two species. Respiration Q10 in dormant turions ranged within 1.8–2.6 and within 2.3–3.4 in spring (non-dormant) turions. Turions of aquatic plants behave as typical storage, overwintering organs with low respiration rates. No relationship was found between respiration rate of turions and overwintering strategy. In spite of their low respiration rates, turions can usually survive only from one season to another, due to their limited reserves of respiratory substrates for long periods. Contrary to true turions, respiration rates in non-dormant winter apices both in Australian Aldrovanda populations and temperate U. radiata and U. purpurea, in sprouting turions, and growing shoot apices of Aldrovanda were high and ranged from 2.1 to 3.1 μmol kg−1 (FM) s−1, which is comparable to that in aquatic plant leaves or shoots. |
| |
Keywords: | aquatic plants dormant winter buds non-dormant winter apices overwintering aerobic respiration temperature quotient cyanide-resistant respiration |
本文献已被 SpringerLink 等数据库收录! |
|