首页 | 本学科首页   官方微博 | 高级检索  
   检索      


CysK2 from Mycobacterium tuberculosis Is an O-Phospho-l-Serine-Dependent S-Sulfocysteine Synthase
Authors:Eva Maria Steiner  Dominic B?th  Philip L?ssl  Francisco Vilaplana  Robert Schnell  Gunter Schneider
Institution:aDepartment of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden ;bDivision of Glycoscience, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
Abstract:Mycobacterium tuberculosis is dependent on cysteine biosynthesis, and reduced sulfur compounds such as mycothiol synthesized from cysteine serve in first-line defense mechanisms against oxidative stress imposed by macrophages. Two biosynthetic routes to l-cysteine, each with its own specific cysteine synthase (CysK1 and CysM), have been described in M. tuberculosis, but the function of a third putative sulfhydrylase in this pathogen, CysK2, has remained elusive. We present biochemical and biophysical evidence that CysK2 is an S-sulfocysteine synthase, utilizing O-phosphoserine (OPS) and thiosulfate as substrates. The enzyme uses a mechanism via a central aminoacrylate intermediate that is similar to that of other members of this pyridoxal phosphate-dependent enzyme family. The apparent second-order rate of the first half-reaction with OPS was determined as kmax/Ks = (3.97 × 103) ± 619 M−1 s−1, which compares well to the OPS-specific mycobacterial cysteine synthase CysM with a kmax/Ks of (1.34 × 103) ± 48.2. Notably, CysK2 does not utilize thiocarboxylated CysO as a sulfur donor but accepts thiosulfate and sulfide as donor substrates. The specificity constant kcat/Km for thiosulfate is 40-fold higher than for sulfide, suggesting an annotation as S-sulfocysteine synthase. Mycobacterial CysK2 thus provides a third metabolic route to cysteine, either directly using sulfide as donor or indirectly via S-sulfocysteine. Hypothetically, S-sulfocysteine could also act as a signaling molecule triggering additional responses in redox defense in the pathogen upon exposure to reactive oxygen species during dormancy.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号