首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Pleiotropic and Epistatic Behavior of a Ring-Hydroxylating Oxygenase System in the Polycyclic Aromatic Hydrocarbon Metabolic Network from Mycobacterium vanbaalenii PYR-1
Authors:Ohgew Kweon  Seong-Jae Kim  Dae-Wi Kim  Jeong Myeong Kim  Hyun-lee Kim  Youngbeom Ahn  John B Sutherland  Carl E Cerniglia
Institution:aDivision of Microbiology, National Center for Toxicological Research/FDA, Jefferson, Arkansas, USA ;bDepartment of Biotechnology (BK21 Program) and Institute of Microbiomics, Chung-Ang University, Anseong, Republic of Korea
Abstract:Despite the considerable knowledge of bacterial high-molecular-weight (HMW) polycyclic aromatic hydrocarbon (PAH) metabolism, the key enzyme(s) and its pleiotropic and epistatic behavior(s) responsible for low-molecular-weight (LMW) PAHs in HMW PAH-metabolic networks remain poorly understood. In this study, a phenotype-based strategy, coupled with a spray plate method, selected a Mycobacterium vanbaalenii PYR-1 mutant (6G11) that degrades HMW PAHs but not LMW PAHs. Sequence analysis determined that the mutant was defective in pdoA2, encoding an aromatic ring-hydroxylating oxygenase (RHO). A series of metabolic comparisons using high-performance liquid chromatography (HPLC) analysis revealed that the mutant had a lower rate of degradation of fluorene, anthracene, and pyrene. Unlike the wild type, the mutant did not produce a color change in culture media containing fluorene, phenanthrene, and fluoranthene. An Escherichia coli expression experiment confirmed the ability of the Pdo system to oxidize biphenyl, the LMW PAHs naphthalene, phenanthrene, anthracene, and fluorene, and the HMW PAHs pyrene, fluoranthene, and benzoa]pyrene, with the highest enzymatic activity directed toward three-ring PAHs. Structure analysis and PAH substrate docking simulations of the Pdo substrate-binding pocket rationalized the experimentally observed metabolic versatility on a molecular scale. Using information obtained in this study and from previous work, we constructed an RHO-centric functional map, allowing pleiotropic and epistatic enzymatic explanation of PAH metabolism. Taking the findings together, the Pdo system is an RHO system with the pleiotropic responsibility of LMW PAH-centric hydroxylation, and its epistatic functional contribution is also crucial for the metabolic quality and quantity of the PAH-MN.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号