首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Label-Free and Sensitive Fluorescent Detection of Sequence-Specific Single-Strand DNA Based on S1 Nuclease Cleavage Effects
Authors:Zheng Guan  Jinchuan Liu  Wenhui Bai  Zhenzhen Lv  Xiaoling Jiang  Shuming Yang  Ailiang Chen  Guiyuan Lv
Institution:1. Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-food Quality and Safety, Ministry of Agriculture, Beijing, China.; 2. Institute of Materia Medica, Zhejiang Chinese Medical University, Hangzhou, China.; Universität Stuttgart, Germany,
Abstract:The ability to detect sequence-specific single-strand DNA (ssDNA) in complex, contaminant-ridden samples, using a fluorescent method directly without a DNA extraction and PCR step could simplify the detection of pathogens in the field and in the clinic. Here, we have demonstrated a simple label-free sensing strategy to detect ssDNA by employing its complementary ssDNA, S1 nuclease and nucleic acid fluorescent dyes. Upon clearing away redundant complementary ssDNA and possibly mismatched double strand DNA by using S1 nuclease, the fluorescent signal-to-noise ratio could be increased dramatically. It enabled the method to be adaptable to three different types of DNA fluorescent dyes and the ability to detect target ssDNA in complex, multicomponent samples, like tissue homogenate. The method can distinguish a two-base mismatch from avian influenza A (H1N1) virus. Also, it can detect the appearance of 50 pM target ssDNA in 0.5 µg·mL−1 Lambda DNA, and 50 nM target ssDNA in 5 µg·mL−1 Lambda DNA or in tissue homogenate. It is facile and cost-effective, and could be easily extended to detect other ssDNA with many common nucleic acid fluorescent dyes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号