首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Model components of luminol chemiluminescence generated by PMNL
Authors:Moni J Magrisso  Margarita L Alexandrova  Petyo G Bochev  Blagovest G Bechev  Vania I Markova  Ilia C Benchev
Institution:

Department of Biophysics, Medical University, Pleven 5800, Bulgaria

Abstract:The production of activated oxygen species (AOS) by neutrophils (PMNL) is thought to play a key role in the host defence against invading microorganisms. However, the oxygen metabolites are toxic not only to the invading bacteria but also to the surrounding tissue. The oxidative metabolites production can be evaluated by means of chemiluminescent methods. In this study, the possibility of a new analytical approach for quantitative assessment of chemiluminescent kinetics (AOS generation) of isolated PMNL was estimated.

Based on the assumption that the kinetics of luminol-amplified chemiluminescence (LCL) of stimulated PMNL possesses a time-probabilistic nature, this kinetics was described with three components. These components, obtained from different investigated systems, were analyzed and a conclusion was made that the first and the second component represent the processes resulting in extra-and intracellular myeloperoxidase (MPO)-dependent light emission (AOS generation), respectively. The second component was found to be completely dependent on the stimulus ingestion. The third component was not completely MPO-dependent and complicated for interpretation. This component was weakly dependent on the stimulus ingestion, and presents at least some intracellular processes different from those presented by the second component.

A conclusion is made that the examined approach for analysis of LCL kinetics allows an assessment of extra-and intracellularly generated quantities of AOS by stimulated PMNL. The assessment could be done for emitting systems in which no additional modificators are used.

Keywords:Chemiluminescence  Polymorphonuclear leukocyte  Model
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号