首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The new iminothiadiazole derivative VP1.14 ameliorates hippocampal damage after an excitotoxic injury
Authors:Cristina Susín  Jose A Morales-Garcia  Diana Aguilar-Morante  Valle Palomo  Marina Sanz-Sancristobal  Sandra Alonso-Gil  Carmen Gil  Angel Santos  Ana Martinez  Ana Perez-Castillo
Institution:Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas CSIC-UAM, Arturo Duperier, 4 and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain Instituto de Química Médica- CSIC, Juan de la Cierva 3, Madrid, Spain Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.
Abstract:J. Neurochem. (2012) 122, 1193-1202. ABSTRACT: Increased levels of glutamate causing excitotoxic damage accompany many neurological disorders. A well-characterized model of excitotoxic damage involves administration of kainic acid (KA), which causes limbic seizure activity and subsequent neuronal death, particularly in the CA1 and CA3 areas of the hippocampus. Inhibition of the enzyme glycogen synthase kinase-3 (GSK-3) and cAMP levels might play an important role in neuroprotection. As intracellular cAMP levels depend, in part, on the activity of the phosphodiesterase enzymes (PDEs), these enzymes have recently emerged as potential therapeutic targets for the treatment of several diseases. In previous works, we have shown a potent anti-inflammatory and neuroprotective effect of GSK-3 inhibition in a model of excitotoxicity, as well as a reduction of nigrostriatal dopaminergic neuronal cell death after phosphodiesterase 7 inhibition, which leads to an increase in cAMP levels. This study was undertaken to determine whether simultaneous inhibition of GSK-3 and PDE-7 by a novel 5-imino-1,2,4-thiadiazole compound, named VP1.14, could prevent the massive neuronal loss in the hippocampus evoked by intrahippocampal injection of KA. Here, we show that rats treated with VP1.14 showed a reduced inflammatory response after KA injection, and exhibited a significant reduction in pyramidal cell loss in the CA1 and CA3 areas of the hippocampus. Studies with hippocampal HT22 cells in vitro also showed a clear neuroprotective effect of VP1.14 and an anti-inflammatory effect shown by a decrease in the nitrite liberation and in the expression of pro-inflammatory cytokines by primary cultures of astrocytes treated with lipopolysaccharide.
Keywords:excitotoxicity  GSK‐3  hippocampus  neuroinflammation  neuroprotection  PDE7
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号