首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dynamic modification of dendritic cable properties and synaptic transmission by voltage-gated potassium channels
Authors:Charles J Wilson
Institution:(1) Department of Anatomy and Neurobiology, University of Tennessee, Memphis, 875 Monroe Ave., 38163 Memphis, TN
Abstract:Computer simulations of a dendrite possessing voltage-sensitive potassium conductances were used to determine the effects of these conductances on synaptic transmission and on the propagation of synaptic signals within the dendritic tree. Potassium conductances had two principal effects on voltage transients generated by current injections or synaptic conductances. Locally (near the source of the transient), voltage-gated potassium channels produced a potassium shunt current that reduced the amplitude of voltage transients generated by depolarizing currents. This shunt current increased as the amplitude of the depolarizing transient increased and so acted to prevent large synaptic transients from reaching levels that would saturate due to a reduction in driving force. In the presence of rapidly activating potassium currents, excitatory synapses produced larger synaptic currents that were more linearly related to synaptic conductance, but these produced smaller voltage transients. The maximum amplitudes of the voltage transients were limited by the voltage sensitivity of the K+ conductance and the rate at which it could activate. Sufficiently rapid synaptic currents could outrun the K+ conductance and thus achieve high local peak amplitudes. These effects of K+ conductances were unrelated to whether they were located on dendrites or not, being related only to their proximity to the source of synaptic current. The second class of effects of K+ conductances depended on their alteration of the electrotonic structure of the postsynaptic cell and so were observed only when they were located on postsynaptic dendrites. Voltage-gated K+ conductances produced voltage-dependent electrotonic expansion of depolarized dendrites, which had the effect of isolating synaptic inputs on depolarized dendrites from events on the rest of the neuron. Thus, synapses on the same dendrite interacted destructively to a degree much greater than that expected from the classical driving force nonlinearity. Synapses located proximally to a depolarized dendritic region were less effected than those located distally, and the range of the nonlinear interaction between synapses was dependent on the kinetics of activation and deactivation of the conductance. When present in conjunction with rapidly activating dendritic sodium conductance, the potassium conductance sharpened the requirement for spatial and temporal coincidence to produce synaptic boosting by inward currents, and suppressed out-of-synchrony synaptic inputs.
Keywords:electronic length  outward rectification synaptic strength  nonlinear membrane properties  synaptic interactions
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号