首页 | 本学科首页   官方微博 | 高级检索  
     


Modification of bovine pancreatic ribonuclease A with the site-specific reagent 4-arsono-2-nitrofluorobenzene. Spectrophotometric titration of arsononitrophenyl ribonuclease A derivatives
Authors:C F Hummel  B R Gerber  A M Babich  M J Avitable  R P Carty
Abstract:The 4-arsono-2-nitrophenyl chromophore can serve as a versatile spectrophotometric probe of the surface structure of proteins. Values of pK1' and pK2' for the arsonic acid ionizations are near 3 and 8, respectively, and the presence of nearby positive and negative charges produces substantial alterations in the spectral response of the probe. Changes in the extinction at the wavelength of maximum difference are 30-50% of the extinction coefficients, epsilonmax, for each ionization of the arsonic acid moiety. The titration of 41-(4-arsono-2-nitrophenyl)ribonuclease A indicates that the arsonate dianion binds near the active-site histidine residues. With protonation of a carboxylate side chain in the acidic region, presumably aspartic acid-121, the active site is disrupted. The 41-(4-arsono-2-nitrophenyl) group interacts to a greater degree with the histidine-119 side chain than it does with the histidine-12 residue. Interactions of uridine or 3'-cytidylic acid with the ligand-binding region of 41-(4-arsono-2-nitrophenyl) ribonuclease A modify the spectrophotometric response extensively. 3'-Cytidylic acid binds 41-(4-arsono-2-nitrophenyl) ribonuclease A with an affinity 300 times less than that for native ribonuclease A and 17 times lower than that for 41-(2,4-dinitrophenyl) ribonuclease A. The arsononitrophenyl chromophore is responsive to changes in the active site of ribonuclease A induced by such perturbants as ligand binding, chemical modification, and both acid and thermal denaturation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号