Localization of membrane proteins in membrane vesicles of Bacillus subtilis. |
| |
Authors: | W N Konings |
| |
Affiliation: | Laboratorium voor Microbiologie, University of Groningen, Kerklaan 30, Haren, The Netherlands |
| |
Abstract: | Electrons can be transferred to the respiratory chain in whole cells and in membrane vesicles of Bacillus subtilis W 23 by the membrane impermeable electron donor reduced 5-N-methyl-phenazonium-3-sulfonate as efficiently as by the membrane permeable electron donor reduced 5-N-methyl-phenazonium methyl-sulfate, indicating that the respiratory chain is accessible from the outside of the membrane.Succinate is oxidized by whole cells and membrane vesicles at a low rate and does not energize transport of l-glutamate. In the presence of 5-N-methyl-phenazonium-3-sulfonate or 5-N-methyl-phenazonium methyl-sulfate, the oxidation rate and the rate of l-glutamate transport are increased considerably. The electrons are transferred directly from succinic dehydrogenase to these acceptors. Succinic dehydrogenase must therefore be exposed to the outside surface of the membrane in both membrane vesicles and whole cells. The exposure of succinic dehydrogenase to the outside is also indicated by the observations that only a 5% increase in the oxidation rates of succinate-5-N-methyl-phenazonium methylsulfate and succinate-5-N-methyl-phenazonium-3-sulfonate is observed upon solubilization of the membrane with the nonionic detergent Brij-58. Furthermore, treatment of membrane vesicles with trypsin decreases by more than 95% these oxidation rates.NADH is oxidized at a high rate and energizes transport of l-glutamate in whole cells and membrane vesicles effectively. The NADH-oxidation is not effected by trypsin treatment of the vesicles indicating that the oxidation occurs at the inside-surface of the membrane. Trypsin treatment of the vesicles, however, significantly decreases the rate of l-glutamate transport driven by NADH. Therefore component(s) of the transport system for l-glutamate must be effected by trypsin treatment. No apparent differences could be observed in the localization of membrane-bound functions between membrane vesicles and whole cells. This strongly supports the contention that the vesicle membrane of B. subtilis has the same orientation as the cytoplasmic membrane of whole cells. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|