首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The E2 Domain of OdhA of Corynebacterium glutamicum Has Succinyltransferase Activity Dependent on Lipoyl Residues of the Acetyltransferase AceF
Authors:Melanie Hoffelder  Katharina Raasch  Jan van Ooyen  Lothar Eggeling
Institution:Institute of Biotechnology, Forschungszentrum Jülich, Jülich, Germany
Abstract:Oxoglutarate dehydrogenase (ODH) and pyruvate dehydrogenase (PDH) complexes catalyze key reactions in central metabolism, and in Corynebacterium glutamicum there is indication of an unusual supercomplex consisting of AceE (E1), AceF (E2), and Lpd (E3) together with OdhA. OdhA is a fusion protein of additional E1 and E2 domains, and odhA orthologs are present in all Corynebacterineae, including, for instance, Mycobacterium tuberculosis. Here we show that deletion of any of the individual domains of OdhA in C. glutamicum resulted in loss of ODH activity, whereas PDH was still functional. On the other hand, deletion of AceF disabled both PDH activity and ODH activity as well, although isolated AceF protein had solely transacetylase activity and no transsuccinylase activity. Surprisingly, the isolated OdhA protein was inactive with 2-oxoglutarate as the substrate, but it gained transsuccinylase activity upon addition of dihydrolipoamide. Further enzymatic analysis of mutant proteins and mutant cells revealed that OdhA specifically catalyzes the E1 and E2 reaction to convert 2-oxoglutarate to succinyl-coenzyme A (CoA) but fully relies on the lipoyl residues provided by AceF involved in the reactions to convert pyruvate to acetyl-CoA. It therefore appears that in the putative supercomplex in C. glutamicum, in addition to dihydrolipoyl dehydrogenase E3, lipoyl domains are also shared, thus confirming the unique evolutionary position of bacteria such as C. glutamicum and M. tuberculosis.Pyruvate dehydrogenase (PDH) and 2-oxoglutarate dehydrogenase (ODH) activities catalyze key reactions in central metabolism. They exist as huge enzyme complexes of up to 11 MDa to convert a 2-oxoacid to an acyl-coenzyme A (CoA) derivative, which is acetyl- or succinyl-CoA, respectively (for reviews, see references 28 and 29 and references therein). The reaction requires distinct enzyme activities and involves the sequential actions of thiamine-pyrophosphate-dependent oxidative decarboxylation (E1, EC 1.2.4.2), with the concomitant transfer of the respective acyl group to a lipoamide residue. This is followed by the acyl group transfer to CoA, catalyzed by dihydrolipoyl transacylase activity (E2, EC 2.3.1.6), and, finally, the last step is dihydrolipoamide reoxidation to lipoamide by an FAD-dependent dihydrolipoyl dehydrogenase (E3, EC 1.8.1.4), thus enabling the initiation of a new catalytic cycle. As a result, the energy of the C1-C2 bond of an α-oxoacid is preserved in acetyl-CoA and succinyl-CoA, respectively, and NADH.PDH and ODH are structurally closely related assemblies. Structural data for the three-dimensional organization of PDH of Bacillus stearothermophilus have culminated in the current view that the complex consists of an E2 core, to which E1 and E3 are flexibly tethered (20-22). This has similarly been disclosed for the PDH of Escherichia coli (23), as well as for components of ODH (6, 8, 18, 37). The PDH possesses specific E1p and E2p proteins, and ODH possesses specific E1o and E2o proteins, whereas the dihydrolipoyl dehydrogenase component E3 is shared by the two multienzyme complexes (28, 29). Thus, PDH and ODH complexes share one identical polypeptide plus very similar polypeptides, and they also have a similar overall quaternary structure (21, 23).Within the Gram-positives, the Corynebacterineae, such as Mycobacterium tuberculosis and Corynebacterium glutamicum, have a number of distinctive features. This includes the synthesis of mycolic acids enabling the formation of a periplasmic space as in Gram-negatives (15) and the possession of unusual glycans and lipoylated glycans in their cell wall (1). It now has become clear that also the PDH and ODH of these organisms have unique properties, with respect to their protein components, three-dimensional organization, and regulation (25, 36). There is only one E2 protein present and with the isolated protein, it is shown to reconstitute PDH activity together with E1 and E3 proteins (35). An E2 protein specific to ODH is absent in M. tuberculosis, as is the case with C. glutamicum as well. Instead, Corynebacterineae possess one large fusion protein, termed OdhA in C. glutamicum and Kgd in M. tuberculosis, consisting of an E2 domain plus an E1 domain (36). However, as a lipoylated protein in Mycobacterium, only the E2 protein, which confers PDH activity in the reconstitution assay, is known, and no ODH activity is detectable in M. tuberculosis (35). A further remarkable feature found for C. glutamicum is the formation of a mixed 2-oxoacid dehydrogenase complex, since tagged OdhA copurified with the E2, E3, and E1p proteins, and vice versa, tagged E1p copurified with the E2 and E3 proteins together with OdhA (25). Another conspicuous feature shared by the OdhA and Kgd proteins is their interaction with a small regulatory protein which contains a phosphopeptide recognition domain (FHA domain) well characterized for many eukaryotic regulatory proteins. The protein is termed OdhI for C. glutamicum and GarA for M. tuberculosis (4, 25), and the structure of OdhI has recently been resolved (3). These proteins themselves are phosphorylated by one or several serine/threonine protein kinases present in the Corynebacterineae (25, 32), and they interact in their unphosphorylated form with OdhA or Kgd, respectively, to inhibit the activity of these proteins (25, 26).Due to these remarkable features of activities and structures enabling pyruvate and 2-oxoglutarate conversion in the Corynebacterineae, we decided to study PDH and ODH as well as features of their constituent polypeptides in C. glutamicum in somewhat more detail, leading to the detection of the unprecedented structural and functional organization of these important enzyme complexes within central metabolism.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号