首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Antisense Down-Regulation of 4CL Expression Alters Lignification,Tree Growth,and Saccharification Potential of Field-Grown Poplar
Authors:Steven L Voelker  Barbara Lachenbruch  Frederick C Meinzer  Michael Jourdes  Chanyoung Ki  Ann M Patten  Laurence B Davin  Norman G Lewis  Gerald A Tuskan  Lee Gunter  Stephen R Decker  Michael J Selig  Robert Sykes  Michael E Himmel  Peter Kitin  Olga Shevchenko  Steven H Strauss
Abstract:Transgenic down-regulation of the Pt4CL1 gene family encoding 4-coumarate:coenzyme A ligase (4CL) has been reported as a means for reducing lignin content in cell walls and increasing overall growth rates, thereby improving feedstock quality for paper and bioethanol production. Using hybrid poplar (Populus tremula × Populus alba), we applied this strategy and examined field-grown transformants for both effects on wood biochemistry and tree productivity. The reductions in lignin contents obtained correlated well with 4CL RNA expression, with a sharp decrease in lignin amount being observed for RNA expression below approximately 50% of the nontransgenic control. Relatively small lignin reductions of approximately 10% were associated with reduced productivity, decreased wood syringyl/guaiacyl lignin monomer ratios, and a small increase in the level of incorporation of H-monomers (p-hydroxyphenyl) into cell walls. Transgenic events with less than approximately 50% 4CL RNA expression were characterized by patches of reddish-brown discolored wood that had approximately twice the extractive content of controls (largely complex polyphenolics). There was no evidence that substantially reduced lignin contents increased growth rates or saccharification potential. Our results suggest that the capacity for lignin reduction is limited; below a threshold, large changes in wood chemistry and plant metabolism were observed that adversely affected productivity and potential ethanol yield. They also underline the importance of field studies to obtain physiologically meaningful results and to support technology development with transgenic trees.Composed of diverse layers of cellulose microfibrils and amorphous hemicelluloses within a matrix of pectins, proteins, and lignin, the secondary cell walls of plants are diverse in their morphology, chemistry, and physiological functions. Lignification is of particular interest, as it exhibits highly predictable temporal and spatial patterning and is the last major step in the structural reinforcement of cell walls before the protoplast is dissolved (Donaldson, 2001). To gain detailed insights into cell wall assembly, mutant or transgenic perturbations to lignin biosynthesis have been employed to alter native lignin content and monomer compositions (i.e. to shift ratios of syringyl S], guaiacyl G], and p-hydroxyphenyl H] lignins; Porter et al., 1978; Miller et al., 1983; Baucher et al., 1996; Kajita et al., 1996; Lee et al., 1997; Anterola and Lewis, 2002; Davin et al., 2008a, 2008b; Patten et al., 2010a). In addition, such perturbations give needed insight into the role of lignin in providing resistance to mechanical (Mark, 1967; Niklas, 1992; Gindl and Teischinger, 2002) and biotic (Dixon and Paiva, 1995) stresses. Lignin affects xylem conductance and protects the vasculature from embolism by imparting a barrier between water under transpiration-induced tension in the xylem and the atmosphere (Raven, 1977; Boyce et al., 2004) and retards tissue digestion and decomposition by pathogens and herbivores. Economic incentives have also helped drive research on lignin reductions in wood because lignin is considered the principal cause of recalcitrance to chemical pulping and to simultaneous saccharification and fermentation to produce liquid biofuels (Huntley et al., 2003; Schubert, 2006; Jørgensen et al., 2007; Davin et al., 2008a, 2008b; Foust et al., 2008; Li et al., 2008; Yang and Wyman, 2008).Because each of the major cell wall biopolymers has different functions, changes in one component should induce “compensatory” shifts in concentrations or compositions of the others. Indeed, altering lignin composition and content has been shown to have wide-ranging effects on cell wall morphology, including specification of cell identity and plant form (Davin et al., 2008a, 2008b). An early study of aspen (Populus tremuloides) down-regulated for 4-coumarate:coenzyme A ligase (4CL) reported that young trees had up to 45% less lignin, increased cellulose contents, and increased growth (Hu et al., 1999). These results led Hu and coworkers (1999) to hypothesize that enhanced growth and compensatory deposition of cell wall polysaccharides resulted from reduced carbon demand for lignin synthesis. However, these results were questioned on both analytical and biochemical grounds (Anterola and Lewis, 2002). Subsequent studies of greenhouse-grown aspen (Li et al., 2003; Hancock et al., 2007, 2008) and Chinese white poplar (Populus tomentosa; Jia et al., 2004) containing transgenes that suppress RNA expression of 4CL found no comparable growth enhancement.4CL is generally considered to be the third step in the phenylpropanoid pathway. Consisting of a multigene family (Costa et al., 2005), 4CL is important for monolignol biosynthesis as well as for the generation of other secondary metabolites for plant defense in leaves and stem xylem tissues (Tsai et al., 2006). However, little is known about how down-regulation of 4CL can differentially affect the production of secondary metabolites and whether or not the types and amounts of the defense compounds produced may differ depending on the level of environmental stresses perceived by growing plants.Because of the large differences in plant physiological behavior under field versus laboratory or greenhouse conditions, and the complex development of xylem in growing trees, field studies are essential to understand the level of lignin modification that might be economically useful yet also preserve tree health and productivity. Previous field studies with other forms of lignin modification have suggested that some kinds of perturbations might be tolerated (Pilate et al., 2002). However, comparable studies have not been reported on trees with lignin modifications induced by 4CL inhibition.In this study, we report that 4CL down-regulation via antisense RNA was effective in reducing lignin contents of wood in field-grown trees. In agreement with more recent work (Li et al., 2003; Hancock et al., 2007) and in contrast to an early study (Hu et al., 1999), these changes did not promote increased growth rate. High levels of lignin reduction observed in approximately one-third of the transgenic events led to reduced growth and serious physiological abnormalities. In these low-lignin transgenic events, we identified and quantified significant nonlignin phenolic depositions and utilized a novel combination of cryofixation and confocal microscopy to visualize the in vivo distribution of these compounds within the wood. Finally, we determined that reductions in lignin content did not increase wood processability that would benefit fermentation to produce liquid biofuels.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号