首页 | 本学科首页   官方微博 | 高级检索  
     


Genotype-Specific Neutralization and Protection by Antibodies against Dengue Virus Type 3
Authors:James D. Brien  S. Kyle Austin  Soila Sukupolvi-Petty  Katie M. O'Brien  Syd Johnson  Daved H. Fremont  Michael S. Diamond
Affiliation:Departments of Medicine,1. Pathology & Immunology,2. Molecular Microbiology,3. Biochemistry and Molecular Biophysics,4. Midwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri 63110,5. MacroGenics, Inc., Rockville, Maryland6.
Abstract:Dengue viruses (DENV) comprise a family of related positive-strand RNA viruses that infect up to 100 million people annually. Currently, there is no approved vaccine or therapy to prevent infection or diminish disease severity. Protection against DENV is associated with the development of neutralizing antibodies that recognize the viral envelope (E) protein. Here, with the goal of identifying monoclonal antibodies (MAbs) that can function as postexposure therapy, we generated a panel of 82 new MAbs against DENV-3, including 24 highly neutralizing MAbs. Using yeast surface display, we localized the epitopes of the most strongly neutralizing MAbs to the lateral ridge of domain III (DIII) of the DENV type 3 (DENV-3) E protein. While several MAbs functioned prophylactically to prevent DENV-3-induced lethality in a stringent intracranial-challenge model of mice, only three MAbs exhibited therapeutic activity against a homologous strain when administered 2 days after infection. Remarkably, no MAb in our panel protected prophylactically against challenge by a strain from a heterologous DENV-3 genotype. Consistent with this, no single MAb neutralized efficiently the nine different DENV-3 strains used in this study, likely because of the sequence variation in DIII within and between genotypes. Our studies suggest that strain diversity may limit the efficacy of MAb therapy or tetravalent vaccines against DENV, as neutralization potency generally correlated with a narrowed genotype specificity.Dengue viruses (DENV) cause the most common arthropod-borne viral infection in humans worldwide, with ∼50 million to 100 million people infected annually and ∼2.5 billion people at risk (13, 61). Infection by four closely related but serologically distinct viruses of the Flavivirus genus (DENV serotypes 1, 2, 3, and 4 [DENV-1 to -4, respectively]) cause dengue fever (DF), an acute, self-limiting, yet severe, febrile illness, or dengue hemorrhagic fever and dengue shock syndrome (DHF/DSS), a potentially fatal syndrome characterized by vascular leakage and a bleeding diathesis. Specific treatment or prevention of dengue disease is supportive, as there is no approved antiviral therapy or vaccine available.DENV has an ∼11-kb, single-stranded, positive-sense RNA genome that is translated into a polyprotein and is cleaved posttranslationally into three structural (envelope [E], pre/membrane [prM], and capsid [C]) and seven nonstructural (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) proteins. The three structural proteins encapsidate a single infectious RNA of the DENV genome, whereas the nonstructural proteins have key enzymatic or regulatory functions that promote replication. Additionally, several DENV proteins are multifunctional and modulate cell-intrinsic and cell-extrinsic host immune responses (10).Most flavivirus-neutralizing antibodies recognize the structural E protein (reviewed in reference 40). Based on X-ray crystallographic analysis (32, 33), the DENV E protein is divided into three domains: domain I (DI), which is an 8-stranded β-barrel, domain II (DII), which consists of 12 β-strands, and domain III (DIII), which adopts an immunoglobulin-like fold. Mature DENV virions are covered by 90 antiparallel E protein homodimers, arranged flat along the surface of the virus with quasi-icosahedral symmetry (25). Studies with mouse monoclonal antibodies (MAbs) against DENV-1 and DENV-2 have shown that highly neutralizing anti-DENV antibodies are serotype specific and recognize primarily the lateral-ridge epitope on DIII (15, 49, 53). Additionally, subcomplex-specific MAbs, which recognize some but not all DENV serotypes, recognize a distinct, adjacent epitope on the A β-strand of DIII and also may be inhibitory (16, 28, 42, 53, 56). Complex-specific or flavivirus cross-reactive MAbs recognize epitopes in both DII and DIII and are generally less strongly neutralizing (8, 53).Beyond having genetic complexity (the E proteins of the four distinct serotypes are 72 to 80% identical at the amino acid level), viruses of each serotype can be further divided into closely related genotypes (43, 44, 57). DENV-3 is divided into 4 or 5 distinct genotypes (depending on the study), with up to 4% amino acid variation between genotypes and up to 2% amino acid variation within a genotype (26, 58, 62). The individual genotypes of DENV-3 are separated temporally and geographically (1), with genotype I (gI) strains located in Indonesia, gII strains in Thailand, and gIII strains in Sri Lanka and the Americas. Few examples of strains of gIV and gV exist from samples isolated after 1980 (26, 62). Infection with one DENV serotype is believed to confer long-term durable immunity against strains of the homologous but not heterologous DENV serotypes due to the specificity of neutralizing antibodies and protective CD8+ T cells (45). Indeed, epidemiological studies suggest that a preexisting cross-reactive antibody (7, 24) and/or T cells (34, 35, 64) can enhance the risk of DHF/DSS during challenge with a distinct DENV serotype. Nonetheless, few reports have examined how intergenotypic or even strain variation within a serotype affects the protective efficacy of neutralizing antibodies. This concept is important because the development of tetravalent DENV vaccines with attenuated prototype strains assumes that neutralizing antibody responses, which are lower during vaccination than during natural infection, will protect completely against all genotypes within a given serotype (60). However, a recent study showed markedly disparate neutralizing activities and levels of protection of individual anti-DENV-1 MAbs against different DENV-1 genotypes (49).Herein, we developed a panel of 82 new DENV-3 MAbs and examined their cross-reactivities, epitope specificities, neutralization potential at the genotype level in cell culture, and protective capacities in vivo. The majority of strongly neutralizing MAbs in this panel mapped to specific sites in DIII of the E protein. Remarkably, because of the scale of the sequence variation of DENV-3 strains, most of the protective antibodies showed significant strain specificity in their functional profiles.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号