首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of Estuarine Wetland Degradation on Transport of Toxoplasma gondii Surrogates from Land to Sea
Authors:Karen Shapiro  Patricia A. Conrad  Jonna A. K. Mazet  Wesley W. Wallender  Woutrina A. Miller  John L. Largier
Affiliation:Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California 95616,1. One Health Institute, School of Veterinary Medicine, University of California, Davis, Davis, California 95616,2. Department of Land, Air, and Water Resources, University of California, Davis, Davis, California 95616,3. Bodega Marine Laboratory, University of California, Davis, Davis, California 956164.
Abstract:The flux of terrestrially derived pathogens to coastal waters presents a significant health risk to marine wildlife, as well as to humans who utilize the nearshore for recreation and seafood harvest. Anthropogenic changes in natural habitats may result in increased transmission of zoonotic pathogens to coastal waters. The objective of our work was to evaluate how human-caused alterations of coastal landscapes in California affect the transport of Toxoplasma gondii to estuarine waters. Toxoplasma gondii is a protozoan parasite that is excreted in the feces of infected felids and is thought to reach coastal waters in contaminated runoff. This zoonotic pathogen causes waterborne toxoplasmosis in humans and is a significant cause of death in threatened California sea otters. Surrogate particles that mimic the behavior of T. gondii oocysts in water were released in transport studies to evaluate if the loss of estuarine wetlands is contributing to an increased flux of oocysts into coastal waters. Compared to vegetated sites, more surrogates were recovered from unvegetated mudflat habitats, which represent degraded wetlands. Specifically, in Elkhorn Slough, where a large proportion of otters are infected with T. gondii, erosion of 36% of vegetated wetlands to mudflats may increase the flux of oocysts by more than 2 orders of magnitude. Total degradation of wetlands may result in increased Toxoplasma transport of 6 orders of magnitude or more. Destruction of wetland habitats along central coastal California may thus facilitate pathogen pollution in coastal waters with detrimental health impacts to wildlife and humans.Estuaries are recognized as being critically endangered worldwide. Pollution of estuarine waters is a significant threat to the health of aquatic life, as well as to humans who depend on coastal habitats (23). Contamination of nearshore waters with terrestrially derived, zoonotic pathogens has received little attention in the field of marine water pollution, which has primarily focused on chemical and nutrient pollutants (22, 42, 46, 55). Yet, studies have documented the presence of fecal pathogens from terrestrial animals in coastal waters and filter-feeding shellfish (7, 37, 48), as well as infections and deaths in aquatic wildlife and humans who become exposed through recreation activities or seafood (4, 18, 39). The zoonotic parasite Toxoplasma gondii is emerging as an important waterborne pathogen in both human and marine wildlife populations (2, 3, 6, 11, 15, 38). Consumption of raw oysters, clams, or mussels has recently been determined to be a risk factor for human exposure to T. gondii (24). Moreover, this parasite is an important cause of death in threatened Southern sea otters (Enhydra lutris nereis) (10, 29). Sea otter infection appears most likely to result from ingestion of environmentally resistant T. gondii oocysts that reach coastal waters in contaminated freshwater runoff (35, 36). These oocysts are shed in the feces of infected wild and domestic felids, with an individual cat capable of shedding up to 1 billion oocysts over several days postinfection (12).Elkhorn Slough, within Monterey Bay in California, is one of the high-risk sites for sea otter infection with T. gondii, with seroprevalence rates of 79% in otters sampled in this area (35). To date, the reasons for the high sea otter prevalence of infections with T. gondii at this site remain unknown. This estuarine habitat has been extensively altered by human activities and is listed as an impaired body of water by the State of California (9). Specifically, extensive degradation has been observed in the slough, with over one-third of vegetated wetlands converted to mudflats due to erosion (49). While the effect of this landscape alteration on the transport of waterborne pathogens is not currently known, such degradation may facilitate contamination of nearshore waters with T. gondii.Wetland habitats provide valuable ecosystem services, including improvement of effluent water quality characteristics through removal of a variety of pollutants (28, 50, 57). Artificially constructed wetlands are now used globally in water treatment facilities to remove nutrients, chemical pollutants, and fecal pathogens from contaminated waters before discharge into receiving water bodies (8, 17, 21, 26, 27). However, compared with freshwater and constructed wetlands, significantly less research has focused on the effects of natural, estuarine wetlands on water quality. In the few studies that investigated the impact of saltwater marshes on marine water quality, these habitats were shown to reduce concentrations of chemicals and nutrients that reach coastal waters in contaminated overland runoff (5, 51). In addition, the percentage of watershed-impervious surface coverage and reduction of natural coastal habitats due to anthropogenic changes has been associated with increased coastal water pollution (33, 34). Despite previous research suggesting a link between wetland degradation and coastal pathogen pollution (5, 33, 34, 51), the role estuarine wetlands play in the transport of terrestrial pathogens from land to sea has not been previously investigated.The overall goal of our research was to evaluate the effect of coastal wetland degradation on contamination of estuarine and coastal waters with terrestrially derived, zoonotic pathogens. Specifically, the objective of this study was to measure T. gondii oocyst transport through vegetated estuarine wetlands and nonvegetated mudflats to quantify the effect of vegetation loss on the flux of this zoonotic pathogen to coastal waters. Due to the biohazard risks associated with the release of environmentally resistant oocysts, experiments used previously validated surrogate microspheres and a specially designed flume that was deployed in vegetated and mudflat (nonvegetated) estuarine wetland habitats. The flume-in-field study design allowed for replication of experiments using specific hydrological parameters while conducting the study within a natural estuarine environment with in situ vegetation, substrate, and water. The two autofluorescent microspheres used in this study have similar physical and surface chemistry properties to T. gondii oocysts and have been previously evaluated as surrogate particles for this protozoan parasite (44). Our results provide novel insights into the consequences of changes in coastal habitat on the ecology of zoonotic infectious disease organisms in coastal marine ecosystems.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号