首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A Commensal Gone Bad: Complete Genome Sequence of the Prototypical Enterotoxigenic Escherichia coli Strain H10407
Authors:Lisa C Crossman  Roy R Chaudhuri  Scott A Beatson  Timothy J Wells  Mickael Desvaux  Adam F Cunningham  Nicola K Petty  Vivienne Mahon  Carl Brinkley  Jon L Hobman  Stephen J Savarino  Susan M Turner  Mark J Pallen  Charles W Penn  Julian Parkhill  A Keith Turner  Timothy J Johnson  Nicholas R Thomson  Stephen G J Smith  Ian R Henderson
Abstract:In most cases, Escherichia coli exists as a harmless commensal organism, but it may on occasion cause intestinal and/or extraintestinal disease. Enterotoxigenic E. coli (ETEC) is the predominant cause of E. coli-mediated diarrhea in the developing world and is responsible for a significant portion of pediatric deaths. In this study, we determined the complete genomic sequence of E. coli H10407, a prototypical strain of enterotoxigenic E. coli, which reproducibly elicits diarrhea in human volunteer studies. We performed genomic and phylogenetic comparisons with other E. coli strains, revealing that the chromosome is closely related to that of the nonpathogenic commensal strain E. coli HS and to those of the laboratory strains E. coli K-12 and C. Furthermore, these analyses demonstrated that there were no chromosomally encoded factors unique to any sequenced ETEC strains. Comparison of the E. coli H10407 plasmids with those from several ETEC strains revealed that the plasmids had a mosaic structure but that several loci were conserved among ETEC strains. This study provides a genetic context for the vast amount of experimental and epidemiological data that have been published.Current dogma suggests the Gram-negative motile bacterium Escherichia coli colonizes the infant gut within hours of birth and establishes itself as the predominant facultative anaerobe of the colon for the remainder of life (3, 59). While the majority of E. coli strains maintain this harmless existence, some strains have adopted a pathogenic lifestyle. Contemporary tenets suggest that pathogenic strains of E. coli have acquired genetic elements that encode virulence factors and enable the organism to cause disease (12). The large repertoire of virulence factors enables E. coli to cause a variety of clinical manifestations, including intestinal infections mediating diarrhea and extraintestinal infections, such as urinary tract infections, septicemia, and meningitis. Based on clinical manifestation of disease, the repertoire of virulence factors, epidemiology, and phylogenetic profiles, the strains causing intestinal infections can be divided into six separate pathotypes, viz., enteroaggregative E. coli (EAEC), enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC), enterohemorrhagic E. coli (EHEC), diffuse adhering E. coli (DAEC), and enterotoxigenic E. coli (ETEC) (33, 35, 39).ETEC is responsible for the majority of E. coli-mediated cases of human diarrhea worldwide. It is particularly prevalent among children in developing countries, where sanitation and clean supplies of drinking water are inadequate, and in travelers to such regions. It is estimated that there are 200 million incidences of ETEC infection annually, resulting in hundreds of thousands of deaths in children under the age of 5 (55, 64). The essential determinants of ETEC virulence are traditionally considered to be colonization of the host small-intestinal epithelium via plasmid-encoded colonization factors (CFs) and subsequent release of plasmid-encoded heat-stable (ST) and/or heat-labile (LT) enterotoxins that induce a net secretory state leading to profuse watery diarrhea (20, 62). More recently, additional plasmid-encoded factors have been implicated in the pathogenesis of ETEC, namely, the EatA serine protease autotransporter (SPATE) and the EtpA protein, which acts as an intermediate in the adhesion between bacterial flagella and host cells (23, 32, 42, 46). Furthermore, a number of chromosomal factors are thought to be involved in virulence, e.g., the invasin Tia; the TibA adhesin/invasin; and LeoA, a GTPase with unknown function (14, 21, 22). E. coli H10407 is considered a prototypical ETEC strain; it expresses colonization factor antigen 1 (CFA/I) and the heat-stable and heat labile toxins. Loss of a 94.8-kb plasmid encoding CFA/I and a gene for ST enterotoxin from E. coli strain H10407 leads to reduced ability to cause diarrhea (17).Here, we report the complete genome sequence and virulence factor repertoire of the prototypical ETEC strain H10407 and the nucleotide sequence and gene repertoire of the plasmids from ETEC strain E1392/75, and we describe a novel conserved secretion system associated with the sequenced ETEC strains.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号