Acquisition of Iron by Alkaliphilic Bacillus Species |
| |
Authors: | Duncan G. G. McMillan Imelda Velasquez Brook L. Nunn David R. Goodlett Keith A. Hunter Iain Lamont Sylvia G. Sander Gregory M. Cook |
| |
Affiliation: | Department of Microbiology and Immunology,1. Department of Biochemistry,2. Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand,3. Medicinal Chemistry Department, University of Washington, Box 358610, Seattle, Washington 981154. |
| |
Abstract: | The biochemical and molecular mechanisms used by alkaliphilic bacteria to acquire iron are unknown. We demonstrate that alkaliphilic (pH > 9) Bacillus species are sensitive to artificial iron (Fe3+) chelators and produce iron-chelating molecules. These alkaliphilic siderophores contain catechol and hydroxamate moieties, and their synthesis is stimulated by manganese(II) salts and suppressed by FeCl3 addition. Purification and mass spectrometric characterization of the siderophore produced by Caldalkalibacillus thermarum failed to identify any matches to previously observed fragmentation spectra of known siderophores, suggesting a novel structure.Iron is an abundant element in nature; however, in most aqueous aerobic environments iron forms insoluble ferric hydroxide, Fe(OH)3. This poses a major problem for most aerobic bacteria, as ferric hydroxide has a solubility constant of 10−39 M, therefore limiting the concentration of ferric ions to 10−18 M at pH 7.0. For example, bacteria living in seawater (approximate pH 8.0) require iron, yet dissolved iron is only present at 0.02 to 2.0 nM (5). Despite this apparent lack of bioavailability, iron has been repeatedly demonstrated to be an essential element for aerobic bacterial growth (1).With the lack of readily accessible iron at physiological pH, most bacteria have evolved systems to deal with the incumbent problem of iron acquisition. Under iron-rich conditions, Fe2+ uptake receptors, such as FeoAB, are synthesized in bacteria, which passively import iron in the immediate vicinity of the cell (1, 23). No equivalent system has been identified for Fe3+ transport. To acquire Fe3+ under aqueous aerobic conditions, bacteria commonly have import systems involving the synthesis, secretion, and regathering of a group of secondary metabolites known as siderophores (1, 11). Siderophores are low-molecular-weight chemical moieties that chelate Fe3+ and typically have complex formation (Kf) constants in the range of 1023 to 1052 (11). Siderophores, like other chelators, are known to increase the solubility of iron by hindering the formation of Fe-oxyhydroxides at high pH, at which the Fe-oxyhydroxides are the dominating inorganic species (27). Siderophores are also known to facilitate the dissolution of Fe from minerals (3). Siderophore-iron complexes can either be transported through cellular membranes using dedicated transport systems or if the Fe(III) central atom is reduced, making the iron bioavailable for cellular processes (10, 14). Three major groups of siderophores have been described in bacteria: hydroxamates, catecholates, and carboxylates. Hydroxamates and catechols are commonly produced by aerobic bacteria living at neutral to alkaline pH, whereas carboxylates are significantly more common in bacteria living in mildly acidic pH (11-13). In the genus Bacillus, Bacillus megaterium and Bacillus subtilis are producers of schizokinen and bacillibactin, respectively (6, 20). Bacillus anthracis produces both a catechol and a hydroxamate siderophore (7, 34), and B. licheniformis strain VK21 is the only known example of a thermoresistant catecholate-producing Gram-positive bacterium (32).Although there is extensive literature on iron capture mechanisms in bacteria that thrive at neutral pH, there is little information at a biochemical or molecular level on how aerobic bacteria growing at extreme alkaline pHs (i.e., pH 9 to 11) acquire iron. At alkaline pH, the solubility constant for iron decreases far below the requirement for living cells, and the concentration of bioavailable iron is estimated to be approximately 10−23 M at pH 10 (11). Taking this extreme lack of iron into account, the sequestering mechanisms of alkaliphilic bacteria must be powerful, yet there has been little analysis of the types of iron-chelating molecules these bacteria produce. |
| |
Keywords: | |
|
|