首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The archaeal transamidosome for RNA-dependent glutamine biosynthesis
Authors:Theodoros Rampias  Kelly Sheppard  Dieter S?ll
Institution:1.Department of Molecular Biophysics and Biochemistry and 2.Department of Chemistry, Yale University, New Haven, CT 06511, USA
Abstract:Archaea make glutaminyl-tRNA (Gln-tRNAGln) in a two-step process; a non-discriminating glutamyl-tRNA synthetase (ND-GluRS) forms Glu-tRNAGln, while the heterodimeric amidotransferase GatDE converts this mischarged tRNA to Gln-tRNAGln. Many prokaryotes synthesize asparaginyl-tRNA (Asn-tRNAAsn) in a similar manner using a non-discriminating aspartyl-tRNA synthetase (ND-AspRS) and the heterotrimeric amidotransferase GatCAB. The transamidosome, a complex of tRNA synthetase, amidotransferase and tRNA, was first described for the latter system in Thermus thermophilus Bailly, M., Blaise, M., Lorber, B., Becker, H.D. and Kern, D. (2007) The transamidosome: a dynamic ribonucleoprotein particle dedicated to prokaryotic tRNA-dependent asparagine biosynthesis. Mol. Cell, 28, 228–239.]. Here, we show a similar complex for Gln-tRNAGln formation in Methanothermobacter thermautotrophicus that allows the mischarged Glu-tRNAGln made by the tRNA synthetase to be channeled to the amidotransferase. The association of archaeal ND-GluRS with GatDE (KD = 100 ± 22 nM) sequesters the tRNA synthetase for Gln-tRNAGln formation, with GatDE reducing the affinity of ND-GluRS for tRNAGlu by at least 13-fold. Unlike the T. thermophilus transamidosome, the archaeal complex does not require tRNA for its formation, is not stable through product (Gln-tRNAGln) formation, and has no major effect on the kinetics of tRNAGln glutamylation nor transamidation. The differences between the two transamidosomes may be a consequence of the fact that ND-GluRS is a class I aminoacyl-tRNA synthetase, while ND-AspRS belongs to the class II family.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号