首页 | 本学科首页   官方微博 | 高级检索  
     


The Proteome and Lipidome of Synechocystis sp. PCC 6803 Cells Grown under Light-Activated Heterotrophic Conditions
Authors:Nicole Plohnke  Tobias Seidel  Uwe Kahmann  Matthias R?gner  Dirk Schneider  Sascha Rexroth
Affiliation:From the ‡Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany; ;§Department of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany; ;¶Department of Molecular Cell Biology, Bielefeld University, 33615 Bielefeld, Germany
Abstract:Cyanobacteria are photoautotrophic prokaryotes with a plant-like photosynthetic machinery. Because of their short generation times, the ease of their genetic manipulation, and the limited size of their genome and proteome, cyanobacteria are popular model organisms for photosynthetic research. Although the principal mechanisms of photosynthesis are well-known, much less is known about the biogenesis of the thylakoid membrane, hosting the components of the photosynthetic, and respiratory electron transport chain in cyanobacteria. Here we present a detailed proteome analysis of the important model and host organism Synechocystis sp. PCC 6803 under light-activated heterotrophic growth conditions. Because of the mechanistic importance and severe changes in thylakoid membrane morphology under light-activated heterotrophic growth conditions, a focus was put on the analysis of the membrane proteome, which was supported by a targeted lipidome analysis. In total, 1528 proteins (24.5% membrane integral) were identified in our analysis. For 641 of these proteins quantitative information was obtained by spectral counting. Prominent changes were observed for proteins associated with oxidative stress response and protein folding. Because of the heterotrophic growth conditions, also proteins involved in carbon metabolism and C/N-balance were severely affected. Although intracellular thylakoid membranes were significantly reduced, only minor changes were observed in their protein composition. The increased proportion of the membrane-stabilizing sulfoqinovosyl diacyl lipids found in the lipidome analysis, as well as the increased content of lipids with more saturated acyl chains, are clear indications for a coordinated synthesis of proteins and lipids, resulting in stabilization of intracellular thylakoid membranes under stress conditions.Cyanobacteria are a widespread group of photoautotrophic organisms, which significantly contribute to global carbon fixation. Cyanobacteria and plant chloroplasts share a common ancestor, and thus cyanobacteria have a plant-like photosynthetic metabolism (1, 2). Consequently, they are established model organisms for studies, aiming to elucidate photosynthetic mechanisms. Both, chloroplasts and cyanobacteria, have two internal membrane systems, that is, the inner envelope and the cytoplasmic membrane (CM)1 in chloroplasts or cyanobacteria, respectively, as well as the thylakoid membrane (TM) system, which harbors the complexes of the photosynthetic electron transfer chain (3, 4). The photosynthetic electron transfer chain typically consists of the three membrane integral protein complexes: photosystem I (PS I), photosystem II (PS II), and the cytochrome b6f complex, as well as of the soluble electron carriers plastoquinone and plastocyanin (5, 6). In the end, reduction equivalents are produced, which are used for CO2-fixation (7). However, besides the ability to grow photoautotrophically, some cyanobacteria are also capable to grow photoheterotrophically, where they use reduced organic compounds as carbon source, or even completely heterotrophically by using reduced organic compounds as carbon and energy source (8). The well-characterized cyanobacterium Synechocystis sp. PCC 6803 (9) (hereafter: Synechocystis) can grow in darkness under light-activated heterotrophic growth (LAHG) conditions by using glucose as carbon and energy source (10). Enhanced sugar catabolism in LAHG cultures is, for example, reflected by increased activities of enzymes involved in sugar catabolism, such as glucokinase and pyruvate kinase (11). The effects of LAHG conditions on the abundance of soluble Synechocystis proteins have been analyzed previously, although only 23 proteins with a significantly altered expression level (LAHG versus autotrophic growth) have been described. This study has e.g. indicated that under LAHG conditions glucose is mainly degraded by the oxidative pentose phosphate (OPP) pathway (12). The histidine kinase 8 (Hik8) as well as the sigma factor E (SigE), regulating the expression of sugar-degrading genes, were shown to be essential for LAHG (13, 14).Although readjustments of the cellular energy metabolism are important, the impact on the cellular membrane architecture is more striking. The ability of Synechocystis to grow under LAHG conditions has been used recently to analyze TM formation within cyanobacterial cells (15). Although dark-adapted Synechocystis cells have no active PS II complex, complete photosynthetic activity is regained within 24 h after transferring dark-adapted cells into the light. Furthermore, reappearance of photosynthetic electron transfer processes is coupled to the formation of internal TMs. However, it is essentially still completely enigmatic how the formation of internal TM is controlled, although some proteins have been suggested to be involved. These proteins include the vesicle inducing protein in plastids 1 (Vipp1), DnaK proteins, a prohibitin-like protein, as well as the YidC protein, a membrane protein integrase (1619). Nevertheless, although some proteins have been suggested to be more directly involved in TM formation, the stability of the TM is also globally affected indirectly by pathways, which control the biogenesis of lipids and/or cofactors, and mutants defective in synthesis of chlorophyll or of the membrane lipid phosphatidylglycerol (PG) have severely reduced TM systems (20, 21).In the present work, we combined prefractioning of Synechocystis cellular membranes with a global proteome and lipidome analysis, to shift the analytical focus toward the rearrangement of the internal thylakoid membrane system observed in Synechocystis cells under LAHG conditions, with a significantly larger coverage of the proteome than in former studies. Furthermore, also the effect on Synechocystis lipids was analyzed in a targeted mass spectrometric approach, revealing significant adjustment of fatty acid saturation in response to the LAHG conditions.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号