首页 | 本学科首页   官方微博 | 高级检索  
     


An Escherichia coli Strain,PGB01, Isolated from Feral Pigeon Faeces,Thermally Fit to Survive in Pigeon,Shows High Level Resistance to Trimethoprim
Authors:Arvind Kumar  Bipransh Kumar Tiwary  Sangita Kachhap  Ashis Kumar Nanda  Ranadhir Chakraborty
Affiliation:1. OMICS Laboratory, Department of Biotechnology, University of North Bengal, Dist, Darjeeling, 734013, India.; 2. Lignocellulose Biotechnology Laboratory, Department of Microbiology, University of Delhi South Campus, 110021, New Delhi.; 3. Bioinformatis Centre, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India.; 4. Department of Chemistry, University of North Bengal, Dist-Darjeeling, 734013, India.; Instutite of Agrochemistry and Food Technology, SPAIN,
Abstract:In this study, of the hundred Escherichia coli strains isolated from feral Pigeon faeces, eighty five strains were resistant to one or more antibiotics and fifteen sensitive to all the antibiotics tested. The only strain (among all antibiotic-resistant E. coli isolates) that possessed class 1 integron was PGB01. The dihydrofolate reductase gene of the said integron was cloned, sequenced and expressed in E. coli JM109. Since PGB01 was native to pigeon’s gut, we have compared the growth of PGB01 at two different temperatures, 42°C (normal body temperature of pigeon) and 37°C (optimal growth temperature of E. coli; also the human body temperature), with E. coli K12. It was found that PGB01 grew better than the laboratory strain E. coli K12 at 37°C as well as at 42°C. In the thermal fitness assay, it was observed that the cells of PGB01 were better adapted to 42°C, resembling the average body temperature of pigeon. The strain PGB01 also sustained more microwave mediated thermal stress than E. coli K12 cells. The NMR spectra of the whole cells of PGB01 varied from E. coli K12 in several spectral peaks relating some metabolic adaptation to thermotolerance. On elevating the growth temperature from 37°C to 42°C, susceptibility to kanamycin (both strains were sensitive to it) of E. coli K12 was increased, but in case of PGB01 no change in susceptibility took place. We have also attempted to reveal the basis of trimethoprim resistance phenotype conferred by the dfrA7 gene homologue of PGB01. Molecular Dynamics (MD) simulation study of docked complexes, PGB01-DfrA7 and E. coli TMP-sensitive-Dfr with trimethoprim (TMP) showed loss of some of the hydrogen and hydrophobic interaction between TMP and mutated residues in PGB01-DfrA7-TMP complex compared to TMP-sensitive-Dfr-TMP complex. This loss of interaction entails decrease in affinity of TMP for PGB01-DfrA7 compared to TMP-sensitive-Dfr.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号