首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cytokeratin filaments and desmonsomes in the epithelioid cells of the perineurial and arachnoidal sheaths of some vertebrate species
Authors:Thomas Achtstätter  Bernadette Fouquet  Elisabeth Rungger-BraUndele  Werner W Frnake
Institution:Division of Membrane Biology and Biochemistry, German Cancer Research Center, Heidelberg.
Abstract:Using electron microscopy and immunohistochemistry with a large panel of antibodies to various cytoskeletal proteins we have noted that the single- or multi-layered sheaths of epithelioid cells ("neurothelia") surrounding peripheral nerves (perineurial cells) or structures of the central nervous system, including the optic nerve (arachnoid cells), show remarkable interspecies differences in their cytoskeletal complements. In two anuran amphibia examined (Xenopus laevis, Rana ridibunda), the cells of both forms of neurothelia, i.e., perineurial and arachnoid, are interconnected by true desmosomes and are rich intermediate-sized filaments (IFs) of the cytokeratin type. Among higher vertebrates, a similar situation is found in the bovine and chicken nervous systems, in which the arachnoid cells of the meninges contain desmosomes and IFs of both the cytokeratin (apparently with restricted epitope accessibilities in the chicken) and the vimentin type, whereas the perineurial cells of many nerves contain cytokeratin IFs, often together with vimentin, but no desmosomes. In contrast, in rat arachnoidal and perineurial cells significant reactions have been observed neither for cytokeratins nor for desmosomes. In the human nervous system, cytokeratins and desmosomes have also not been seen in the various perineuria studied whereas desmosomes are frequent in arachnoidal cell layers which are dominated by vimentin IFs and only in certain small regions of the brain contain some additional cytokeratins. The occurrence of cytokeratins in the tissues found positive by immunohistochemistry has been confirmed by gel electrophoresis of cytoskeletal proteins, followed by immunoblotting. Our results emphasize both similarities and differences between the neurothelia on the one hand and epithelia or endothelia on the other, justifying classification as a separate kind of tissue, i.e., neurothelium. The observations of interspecies differences lead to the challenging conclusion that neither desmosomes nor cytokeratins are essential for the basic functions of neurothelial sheaths nor does the specific type of IF protein expressed in these cells appear to matter in this respect. The results are also discussed in relation to the cytoskeletal characteristics of other epithelioid tissues and of human neurothelium-derived tumors.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号