首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Continuous light may induce photosynthetic downregulation in onion – consequences for growth and biomass partitioning
Authors:Natasja C van Gestel  April D Nesbit  Elizabeth P Gordon  Cary Green  Paul W Paré  Leslie Thompson  Ellen B Peffley  David T Tissue
Institution:Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA; Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA; Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
Abstract:Onions were grown in environmentally controlled growth chambers for 85 days to investigate the effect of relatively low light intensity (350 µmol m−2 s−1) at two different total irradiance periods (12-h and 24-h photoperiods) on growth and photosynthetic performance. To test whether photosynthetic downregulation occurred due to carbohydrate feedback, we used onions that differed in bulb-forming capacity. Allium fistulosum (L. cv. 'Kinka') is a non-bulbing onion, with potentially limited carbohydrate storage capacity, while Allium cepa (L. cv. 'Cal 296') is a bulb-forming onion with possibly greater carbohydrate storage capacity. In A . fistulosum , photosynthetic downregulation was observed in 24-h plants as indicated by reductions in the light- and CO2-saturated photosynthetic capacity ( A sat and A max, respectively) by 26%, reduced maximum rate of carboxylation ( V cmax) by ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) by 33%, reduced maximum rate of electron transport ( J max) by 27% and 3-fold higher foliar sugar concentration. In contrast, the photosynthetic and biochemical capacity of A . cepa was not affected by exposure to 24-h photoperiod, presumably because substantial amounts of foliar carbohydrates were re-allocated to bulbs. In 24-h A . cepa , up to 84% of total plant mass was allocated to bulbs, while in 12-h plants, more mass was allocated to leaves. Production of greater leaf area in 12-h plants compared with 24-h plants compensated for lower total daily irradiance such that 12-h and 24-h plants of both species exhibited similar daily total leaf net CO2 exchange and plant mass at the end of the experiment.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号