首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Allelism within the DEX and STA gene families in Saccharomyces diastaticus
Authors:J A Erratt and A Nasim
Institution:(1) Molecular Genetics Section, Division of Biological Sciences, National Research Council, 100 Sussex Drive, K1A 0R6 Ottawa, Ontario, Canada
Abstract:Summary Saccharomyces diastaticus produces an extracellular glucoamylase and is therefore capable of hydrolyzing and fermenting starch. Tamaki (1978) studied starch utilization in S. diastaticus and found three polymeric genes controlling this function: STA1, STA2 and STA3. Independently, Erratt and Stewart (1978) studied dextrin utilization by the yeast S. diastaticus and designated the gene, which they identified, DEX1. Erratt and Stewart (1981a, b) later described two other genes which controlled glucoamylase production in S. diastaticus: DEX2 and a third which was allelic to STA3. At that time STA1 and STA2 were not available to test for allelism in the DEX gene family. In this study strains containing the remaining 4 genes have been examined to determine if further allelism exists between the two gene families. It was ascertained that DEX1 is allelic to STA2 and DEX2 is allelic to STA1. Therefore, no new gene controlling starch utilization has been identified and these two nomenclatures can now be consolidated into one. Based on the fact that the glucoamylase from S. diastaticus can hydrolyze both dextrin and starch, dextrin being the term used to described partially hydrolyzed starch, and the more wide use of the nomenclature STA, we propose to retain STA as the designation for genes coding for glucoamylase production in S. diastaticus.
Keywords:Saccharomyces diastaticus  Glucoamylase  DEX/STA
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号