首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Perforin oligomers form arcs in cellular membranes: a locus for intracellular delivery of granzymes
Authors:S S Metkar  M Marchioretto  V Antonini  L Lunelli  B Wang  R JC Gilbert  G Anderluh  R Roth  M Pooga  J Pardo  J E Heuser  M D Serra  C J Froelich
Abstract:Perforin-mediated cytotoxicity is an essential host defense, in which defects contribute to tumor development and pathogenic disorders including autoimmunity and autoinflammation. How perforin (PFN) facilitates intracellular delivery of pro-apoptotic and inflammatory granzymes across the bilayer of targets remains unresolved. Here we show that cellular susceptibility to granzyme B (GzmB) correlates with rapid PFN-induced phosphatidylserine externalization, suggesting that pores are formed at a protein-lipid interface by incomplete membrane oligomers (or arcs). Supporting a role for these oligomers in protease delivery, an anti-PFN antibody (pf-80) suppresses necrosis but increases phosphatidylserine flip-flop and GzmB-induced apoptosis. As shown by atomic force microscopy on planar bilayers and deep-etch electron microscopy on mammalian cells, pf-80 increases the proportion of arcs which correlates with the presence of smaller electrical conductances, while large cylindrical pores decline. PFN appears to form arc structures on target membranes that serve as minimally disrupting conduits for GzmB translocation. The role of these arcs in PFN-mediated pathology warrants evaluation where they may serve as novel therapeutic targets.The cytotoxic cell granule-secretory pathway depends on perforin (PFN) to deliver granzyme (Gzm) proteases to the cytosol of target cells where they induce apoptosis and other biological effects, such as inflammation.1 Ring-shaped transmembrane PFN pores hereafter called ‘cylindrical pores'', are presumed to act as the gateway for cytosolic entry, either at the plasma membrane or after endocytosis.2, 3, 4 In either case the highly cationic Gzms are thought to diffuse through these cylindrical pores formed by poly-PFN. Nevertheless, a mechanistic understanding of the phenomenon (how the cationic globular protein exchanges from its carrier proteoglycan, serglycin, to the pore and crosses the plasma and/or vesicular membranes) has been lacking due to limitations in imaging technology and in our detailed understanding of the molecular forms that PFN may adopt following interaction with a target cell plasma membrane.Here we show under conditions where cylindrical pore formation is minimal,5 that granzyme B (GzmB) translocation readily occurs. We previously demonstrated that a prelude to granzyme translocation is PFN-mediated, Ca-independent phosphatidylserine (PS) externalization (flip-flop) measured by annexin-V and lactadherin binding.6 This rapid PS flip-flop also occurs when mouse CD8 cells contact antigen-pulsed target cells. Inasmuch as the proteinaceous cylinders offer a formidable barrier to lipid flow, we have speculated that the observed movement of anionic phospholipids to the external leaflet is due to the formation of proteo-lipidic structures, which consists of oligomerized PFN monomers bearing an arc morphology and plasma membrane lipids.6, 7, 8In the work reported here, the topology of PFN embedded into homogeneous planar bilayers and tumor cell plasma membranes was imaged by atomic force microscopy (AFM) and deep etch electron microscopy (DEEM), respectively. Further, the influence of an anti-human PFN mAb (pf-80) that rescues target cells from necrosis,9 was examined. The AFM data show that PFN forms arcs as well as rings in planar bilayers, while conductance measurements across equivalent membranes in parallel experiments measured functional pore sizes consistent with these varied structures. The pf-80 mAb increased the frequency of arc formation and reduced conductance values. Interestingly, PS flip-flop and granzyme delivery were both increased in target cells after PFN oligomerization was interrupted by the pf-80 mAb. A similar effect was seen in T24 bladder carcinoma cells imaged by DEEM. Treatment with PFN leads to deposition of rings (barrel stave pores) and arcs and the pf-80 mAb increased the ratio of arcs to rings on the surface of these cells. We suggest that the observed protein arcs function as toroidal pores in whole cells, explaining PS flip-flop, and act as focal points for granzyme translocation across lipid bilayer.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号