首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea
Authors:Johan Wikner  Agneta Andersson
Institution:1. Department of Ecology and Environmental Science, Ume? University, , SE‐901 87 Ume?, Sweden;2. Ume? Marine Sciences Centre, Ume? University, , SE‐910 20, H?rnefors, Sweden;3. The Swedish Institute for the Marine Environment, Unit at Ume? University, , SE‐910 20 H?rnefors, Sweden
Abstract:Increased precipitation is one projected outcome of climate change that may enhance the discharge of freshwater to the coastal zone. The resulting lower salinity, and associated discharge of both nutrients and dissolved organic carbon, may influence food web functioning. The scope of this study was to determine the net outcome of increased freshwater discharge on the balance between auto‐ and heterotrophic processes in the coastal zone. By using long‐term ecological time series data covering 13 years, we show that increased river discharge suppresses phytoplankton biomass production and shifts the carbon flow towards microbial heterotrophy. A 76% increase in freshwater discharge resulted in a 2.2 times higher ratio of bacterio‐ to phytoplankton production (Pb:Pp). The level of Pb:Pp is a function of riverine total organic carbon supply to the coastal zone. This is mainly due to the negative effect of freshwater and total organic carbon discharge on phytoplankton growth, despite a concomitant increase in discharge of nitrogen and phosphorus. With a time lag of 2 years the bacterial production recovered after an initial decline, further synergistically elevating the microbial heterotrophy. Current climate change projections suggesting increased precipitation may therefore lead to increased microbial heterotrophy, thereby decreasing the transfer efficiency of biomass to higher trophic levels. This prognosis would suggest reduced fish production and lower sedimentation rates of phytoplankton, a factor of detriment to benthic fauna. Our findings show that discharge of freshwater and total organic carbon significantly contributes to the balance of coastal processes at large spatial and temporal scales, and that model's would be greatly augmented by the inclusion of these environmental drivers as regulators of coastal productivity.
Keywords:bacterioplankton  climate     DOC     food web  growth  marine  nutrient  phytoplankton  precipitation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号