首页 | 本学科首页   官方微博 | 高级检索  
     


Insecticidal and feeding deterrent activities of essential oils in the cabbage looper,Trichoplusia ni (Lepidoptera: Noctuidae)
Authors:Z. L. Jiang  Y. Akhtar  X. Zhang  R. Bradbury  M. B. Isman
Affiliation:1. Research and Development Center of Biorational Pesticide, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China;2. Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada;3. Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada;4. Ecosafe Natural Procucts Inc., Saanichton, BC, Canada
Abstract:Ten essential oils were tested against the cabbage looper, Trichoplusia ni larvae for contact, residual and fumigant toxicities and feeding deterrent effects. Against third instar T. ni, Syzygium aromaticum (LD50 = 47.8 μg/larva), Thymus vulgaris (LD50 = 52.0 μg/larva) (the two positive controls) and Cinnamomum glanduliferum (LD50 = 76.0 μg/larva) were the most toxic via topical application. Litsea pungens (LD50 = 87.1 μg/larva), Ilex purpurea (LD50 = 94.0 μg/larva), Cinnamomum cassia (LD50 = 101.5 μg/larva) and Litsea cubeba (LD50 = 112.4 μg/larva) oils were equitoxic. Thymus vulgaris (LC50 = 4.8 mg/ml) and S. aromaticum (LC50 = 6.0 mg/ml) oils were the most toxic in residual bioassays. Cymbopogon citratus (LC50 = 7.7 mg/ml) and C. cassia (LC50 = 8.5 mg/ml) oils were equitoxic followed by Cymbopogon nardus (LC50 = 10.1 mg/ml) in this bioassay. The remaining five oils showed little or no residual effects. In a fumigation bioassay, L. cubeba (LC50 = 16.5 μl/l) and I. purpurea (LC50 = 22.2 μl/l) oils were the most toxic. Cinnamomum glanduliferum (LC50 = 29.7 μl/l) and Sabina vulgaris (LC50 = 31.2 μl/l) oils were equitoxic. Interestingly, S. aromaticum did not exhibit any fumigant toxicity. Cymbopogon citratus, C. nardus and C. cassia strongly deterred feeding by third instar T. ni (DC50s = 26.9, 33.8 and 39.6 μg/cm2, respectively) in a leaf disc choice bioassay. The different responses of T. ni larvae to the oils in different bioassays suggest that these essential oils exhibit different modes of action. Based on their comparable efficacy with essential oils already used as active ingredients in many commercial insecticides (i.e. clove oil and thyme oil), some of these essential oils may have potential as botanical insecticides against T. ni.
Keywords:botanical insecticides  contact toxicity  essential oils  feeding deterrence  fumigant toxicity  Trichoplusia ni
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号