首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Identification of Quantitative Trait Loci for Bacterial Blight Resistance Derived from Oryza meyeriana and Agronomic Traits in Recombinant Inbred Lines of Oryza sativa
Authors:Cheng‐Qi Yan  Xu‐Ming Wang  Chu‐Lang Yu  Jie Zhou  Wei‐Lin Zhang  Ye Cheng  Xiao‐Yue Cheng  Jian‐Ping Chen
Institution:1. State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Plant Protection and Biotechnology, Ministry of Agriculture, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (correspondence to J.‐P. Chen. E‐mail: jpchen2001@yahoo.com.cn);2. Authors’ addresses: College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321000, China;3. State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Plant Protection and Biotechnology, Ministry of Agriculture, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (correspondence to J.‐P. Chen. E‐mail: jpchen2001@yahoo.com.cn)
Abstract:Bacterial blight (BB) is one of the major diseases that affect rice productivity. In previous studies, BB resistance was transferred to cultivated rice Oryza sativa from wild rice Oryza meyeriana using asymmetric somatic hybridization. One of the resistant hybrid progenies (Y73) has also been shown to possess novel resistance gene(s) different from any of those previously associated with BB resistance. We have mapped quantitative trait loci (QTLs) for BB resistance in a recombinant inbred line (RIL) population derived from a cross between Y73 and a BB‐susceptible cv. IR24. Five QTLs were detected where Y73 alleles contributed to increased BB resistance. Three minor QTLs were identified on chromosomes 3, 10 and 11, and two major QTLs on chromosomes 1 and 5, respectively. QTL on chromosome 5, designated qBBR5, had the strongest effect on BB resistance, explaining approximately 37% of the phenotypic variance. Using the same RIL population, we also mapped QTLs for agronomic traits including plant height (PH), heading date (HD), plant yield (PYD) and PYD component traits. A total of 21 QTLs were identified, of which four were detected for PH, six for HD, three for panicle number per plant (PNPP), one for spikelets per panicle (SPP), six for 1000‐grain weight (TGW) and one for PYD. qPH1 (a QTL for PH) was found in the same interval as qBBR1 for BB resistance, and qHD11 for HD and qBBR11 for BB resistance also shared a similar interval. Additionally, BB resistance was significantly correlated with PH or HD in the RIL population. This suggests that the resistance genes may have pleiotropic effects on, or close linkage to, genes controlling PH or HD. These results will help deduce the resistance mechanisms of the novel resistance gene(s) and provide the basis for cloning them and using them in marker‐assisted breeding.
Keywords:quantitative trait loci  mapping  bacterial blight  agronomic trait  resistance gene  rice
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号