首页 | 本学科首页   官方微博 | 高级检索  
     


Towards understanding the unbound state of drug compounds: Implications for the intramolecular reorganization energy upon binding
Affiliation:1. Department of Physics, Karpagam University, Coimbatore 641021, India;2. Centre for Research, Department of Physics, Arignar Anna Govt. Arts College, Musiri 621211, India;1. Department of Medicinal Chemistry, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA;2. Department of Molecular Structure and Characterization, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA;3. Department of Molecular Structure and Characterization, Amgen Inc., 360 Binney St., Cambridge, MA 02142, USA;4. Department of Medicinal Chemistry, Amgen Inc., 360 Binney St., Cambridge, MA 02142, USA;5. Department of Oncology Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA;1. Department of Mathematical Sciences, Osaka Prefecture University, 1-1, Gakuencho, Sakai, Osaka 599-8531, Japan;2. Institute for Nanofabrication Research, Osaka Prefecture University, 1-1 Gakuen-cho,Naka-ku, Sakai, Osaka 599-8531, Japan;1. Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA;2. Department of Biomedical Engineering, Yale University, New Haven, CT 06520-8286, USA;3. Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8286, USA
Abstract:There has been an explosion of structural information for pharmaceutical compounds bound to biological targets, but the conformations and dynamics of compounds free in solution are poorly characterized, if at all. Yet, knowledge of the unbound state is essential to understand the fundamentals of molecular recognition, including the much debated conformational intramolecular reorganization energy of a compound upon binding (ΔEReorg). Also, dependable observation of the unbound compounds is important for ligand-based drug discovery, e.g. with pharmacophore modelling. Here, these questions are addressed with long (⩾0.5 μs) state-of-the-art molecular dynamics (MD) simulations of 26 compounds (including 7 approved drugs) unbound in explicit solvent. These compounds were selected to be chemically diverse, with a range of flexibility, and good quality bioactive X-ray structures. The MD-simulated free compounds are compared to their bioactive structure and conformers generated with ad hoc sampling in vacuo or with implicit generalized Born (GB) aqueous solvation models. The GB conformational models clearly depart from those obtained in explicit solvent, and suffer from conformational collapse almost as severe as in vacuo. Thus, the global energy minima in vacuo or with GB are not suitable representations of the unbound state, which can instead be extensively sampled by MD simulations. Many, but not all, MD-simulated compounds displayed some structural similarity to their bioactive structure, supporting the notion of conformational pre-organization for binding. The ligand–protein complexes were also simulated in explicit solvent, to estimate ΔEReorg as an enthalpic difference ΔHReorg between the intramolecular energies in the bound and unbound states. This fresh approach yielded ΔHReorg values  6 kcal/mol for 18 out of 26 compounds. For three particularly polar compounds 15  ΔHReorg  20 kcal/mol, supporting the notion that ΔHReorg can be substantial. Those large ΔHReorg values correspond to a redistribution of electrostatic interactions upon binding. Overall, the study illustrates how MD simulations offer a promising avenue to characterize the unbound state of medicinal compounds.
Keywords:Conformational dynamics  Drug discovery  Intramolecular energy  Molecular modelling  Molecular recognition  Reorganization energy  Simulation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号