首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mechanism of exonuclease action of BAL 31 nuclease
Authors:X G Zhou  H B Gray
Institution:Department of Biochemical and Biophysical Sciences, University of Houston, TX 77204-5500.
Abstract:Two kinetically and molecularly distinct forms ('fast' (F) and 'slow' (S] of nuclease BAL 31 from Alteromonas espejiana effect the length reduction of linear duplex DNAs through a 3'----5'-directed exonuclease activity in conjunction with an endonuclease activity against the 5'-terminated single-stranded tails generated by the exonuclease activity. No evidence for a 5'----3' mode of exonuclease action was seen. Single-stranded DNA is degraded predominantly by the 3'----5' exonuclease action. There is a pronounced decrease, to roughly constant values, of the average lengths of the tails in partially digested duplexes at a constant extent of digestion with increasing nuclease concentration. This decrease correlates with an increasing extent of ligatability, in the absence of repair, under conditions favoring the joining of fully base-paired ends. The exonuclease action, at least against duplex substrates, is quasi-processive and removes approx. 18 and 28 nucleotides per productive enzyme-substrate encounter for the S and F species, respectively. The dependence on Ca2+ and Mg2+ concentrations of the activities has been determined.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号