首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Abrogation of viral interleukin-6 (vIL-6)-induced signaling by intracellular retention and neutralization of vIL-6 with an anti-vIL-6 single-chain antibody selected by phage display
Authors:Kovaleva Marina  Bussmeyer Ingo  Rabe Björn  Grötzinger Joachim  Sudarman Enge  Eichler Jutta  Conrad Udo  Rose-John Stefan  Scheller Jürgen
Institution:Department of Biochemistry, Christian Albrechts Universit?t, Kiel, Germany.
Abstract:Human herpesvirus 8 (HHV-8) encodes several putative oncogenes, which are homologues to cellular host genes known to function in cell cycle regulation, control of apoptosis, and cytokine signaling. Viral interleukin (vIL-6) is believed to play an important role in the pathogenesis of Kaposi's sarcoma as well as primary effusion lymphoma and multicentric Castleman's disease. Therefore, vIL-6 is a promising target for novel therapies directed against HHV-8-associated diseases. By phage display screening of human synthetic antibody libraries, we have selected a specific recombinant antibody, called monoclonal anti-vIL-6 (MAV), binding to vIL-6. The epitope recognized by MAV was localized on the top of the D helix of the vIL-6 protein, which is a part of receptor binding site III. Consequently, MAV specifically inhibits vIL-6-mediated growth of the primary effusion lymphoma-derived cell line BCBL-1 and blocks STAT3 phosphorylation in the human hepatoma cell line HepG2. Since it was previously found that vIL-6 can also induce signals from within the cell, presumably within the endoplasmic reticulum, we fused the recombinant antibody MAV with the endoplasmic retention sequence KDEL (MAV-KDEL). As a result, COS-7 cells expressing MAV-KDEL and synthesizing vIL-6 ceased to secrete the cytokine. Moreover, we observed that vIL-6 that was bound to MAV-KDEL and retained in the endoplasmic reticulum did not induce STAT3 phosphorylation in HepG2 cells. We conclude that the activity of the intracellularly retained vIL-6 protein is neutralized by MAV-KDEL. Our results might represent a novel therapeutic strategy to neutralize virally encoded growth factors or oncogenes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号