首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mode of action of the macrolide-type antibiotic, chlorothricin. Effect of the antibiotic on the catalytic activity and some structural parameters of pyruvate carboxylases purified from rat and chicken liver.
Authors:P W Schindler  M C Scrutton
Abstract:The macrolide-type antibiotic chlorothricin inhibits pyruvate carboxylases purified from rat liver, chicken liver and Azotobacter vinelandii. Under standard assay conditions the concentration of chlorothricin required for half-maximal inhibition of oxalacetate synthesis is 0.26 mM (rat liver), 0.12 mM (chicken liver), and 0.5 mM (Azobacter vinelandii). Inhibition by chlorothricin appears non-competitive in character when measured as a function of the concentration of the substrates of the pyruvate carboxylase reaction as well as of CoASAc and Mg2+. This pattern of inhibition suggests that this antibiotic interacts at unique sites on chicken and rat liver pyruvate carboxylase which are distinct from both the catalytic and activator sites. Interaction of chlorothricin with the two vertebrate liver pyruvate carboxylases differs from the effect exerted by this antibiotic on pyruvate carboxylase purified from Azotobacter vinelandii. A sigmoidal relationship between initial velocity and inhibitor concentration is observed for the vertebrate enzymes under most conditions whereas a hyperbolic profile characterizes the concentration dependence of inhibition of the Azotobacter vinelandii enzyme by chlorothricin. In the case of rat liver pyruvate carboxylase chlorothricin does not alter the extent of cooperativity in the relationship between initial rate and CoASAc concentration. However, a small but significant increase of the Hill coefficient from a value of 2.7 in the absence of antibiotic to that of 3.3 in the presence of 0.5 mM chlorothricin is observed for chicken liver pyruvate carboxylase. Chlorothricin decreases the rate of inactivation observed when rat liver pyruvate carboxylase is incubated with trinitrobenzenesulfonate and when chicken liver pyruvate carboxylase is incubated at 2 degrees C. The maximal decrease in inactivation observed in the presence of saturating concentrations of antibiotic is 50% for cold inactivation of the chicken liver enzyme and 60% for inactivation of the enzyme from rat liver by trinitrobenzenesulfonate. In both cases a sigmoidal relationship is observed between inactivation rate and chlorothricin concentration. These data as well as the initial rate studies suggest that multiple interacting sites for this antibiotic are present on the vertebrate liver pyruvate carboxylases. The occupancy of these sites appears to cause significant distortion of both the catalytic and the activator sites.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号