首页 | 本学科首页   官方微博 | 高级检索  
     


O-O bond cleavage and alkane hydroxylation in methane monooxygenase
Authors:Per E.M. Siegbahn
Affiliation:Department of Physics, Stockholm University, Sweden.
Abstract:Several new aspects of the O-O bond cleavage and alkane hydroxylation mechanisms have been studied by hybrid density functional theory in this reinvestigation of methane monooxygenase. As concerning key intermediates in these reactions, a new important low-lying state is found, described either as Fe2(III,V) or as Fe2(III,IV)O. A fully optimized transition state for O-O bond cleavage has been determined. It is suggested that the large difference in optimal size (as determined in gas phase) of the complex, before and after the O-O bond cleavage, leads to an additional driving force for the reaction, not considered previously. The strain of the enzyme is estimated to lead to a driving force in the forward direction of about 5 kcal/mol, which could explain some of the pH dependence found in recent experiments. For the hydroxylation reaction, a clean hydrogen abstraction transition state leading to a substrate radical is again found, in contrast to interpretations of radical clock experiments. An explanation, based on new results, is suggested that could account for both the experimental and theoretical results.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号