首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Brownian dynamics simulations of fluorescence fluctuation spectroscopy
Authors:Marisa Huertas de la Torre  Riccardo Forni  Giuseppe Chirico
Institution:Dipartimento di Fisica G. Occhialini, Università di Milano Bicocca, Italy.
Abstract:We have developed a program for the simulation of the fluorescence fluctuations as detected from highly diluted samples of (bio)molecules. The model is applied to translational diffusion and takes into account the hydrodynamic interactions. The solution concentration is kept constant by assuming periodic boundary conditions and spans here the range 0.5< C < 10 nM. We show that the fluorescence correlation functions can be accurately computed on systems of limited size (a few molecules per simulation box) by simulating for a total time approximately 100-300 times the diffusion relaxation time of the fluorescence autocorrelation function. The model is applied also to the simulation of the scanning fluorescence correlation spectroscopy (FCS) and of the photon counting histograms for the confocal collection configuration. Scanning FCS simulations of highly diluted samples (C approximately equals 0.5 nM) show anticorrelation effects in the autocorrelation functions of the fluorescence signal that are less evident for higher concentrations. We suggest here that this effect may be due to the non-uniform occupancy of the scanning area by the fluorophores.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号