首页 | 本学科首页   官方微博 | 高级检索  
     


Finite element evaluation of the AIA shear specimen for bone
Authors:S Mahanian  R L Piziali
Affiliation:Mechanical Engineering Department, University of Puerto Rico, Mayaguez 00708.
Abstract:An elastic-plastic finite element analysis is performed on the AIA shear specimen to evaluate its effectiveness to yield ultimate shear strength values. The effect of geometry, material properties, and yield criteria are discussed in the light of applications to human femoral cortical bone. Specimen dimensions are noted as follows: W, width, D, hole diameter and H, distance between holes. As the H/D ratio increases the stress distribution tends more toward pure shear at the same time the overshoot in the shear distribution increases. An H/D ratio equal to 1.2-1.5 is optimal. The H/W parameter does not affect the overshoot noticeably but it does slightly affect the purity of shear. The material parameters do affect the performance of the shear specimen. However, the effect of the material parameters are far more pronounced in the anisotropic case than it is in the isotropic case. In the isotropic case, the Young modulus does not affect the overshoot. The increase in Poisson's ratio does slightly decrease the overshoot. For the anisotropic case, the increase in the ratio of shear modulus to Young modulus in the transverse direction (G/E2) results in an increase in the overshoot (in the shear distribution). The increase in the ratio of the Young modulus in the transverse direction to that of the axial direction (E2/E1) also results in an increase in the overshoot. Creating a notch at the top of the hole is shown to have the effect of decreasing the overshoot. Its effect on the purity of the shear is rather slight. It is found that plasticity is initiated at the sides of the two holes where the tensile normal stresses are maximum. The plastic region first expands around the perimeter of the hole then radially outward; and finally, it expands into the significant region. If the W/H parameter is less than 5, a sizable portion of the width of the specimen around the hole can go plastic with the significant region still being in the elastic state. Such a situation can cause tearing of the specimen across the width. A W/H ratio of 6 or more can prevent that danger. It is also found that the onset of plasticity brings about higher overshoot and higher purity of shear. The notched shear specimen performs better in actual tests and is more reliable in producing shear failures. The shear strength results obtained from AIA shear tests tend to confirm those shear strength results obtained from torsion tests.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号