首页 | 本学科首页   官方微博 | 高级检索  
     


Glycerol-3-phosphatase of Corynebacterium glutamicum
Authors:Lindner Steffen N  Meiswinkel Tobias M  Panhorst Maren  Youn Jung-Won  Wiefel Lars  Wendisch Volker F
Affiliation:Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany.
Abstract:Formation of glycerol as by-product of amino acid production by Corynebacterium glutamicum has been observed under certain conditions, but the enzyme(s) involved in its synthesis from glycerol-3-phosphate were not known. It was shown here that cg1700 encodes an enzyme active as a glycerol-3-phosphatase (GPP) hydrolyzing glycerol-3-phosphate to inorganic phosphate and glycerol. GPP was found to be active as a homodimer. The enzyme preferred conditions of neutral pH and requires Mg2? or Mn2? for its activity. GPP dephosphorylated both L- and D-glycerol-3-phosphate with a preference for the D-enantiomer. The maximal activity of GPP was estimated to be 31.1 and 1.7 U mg?1 with K(M) values of 3.8 and 2.9 mM for DL- and L-glycerol-3-phosphate, respectively. For physiological analysis a gpp deletion mutant was constructed and shown to lack the ability to produce detectable glycerol concentrations. Vice versa, gpp overexpression increased glycerol accumulation during growth in fructose minimal medium. It has been demonstrated previously that intracellular accumulation of glycerol-3-phosphate is growth inhibitory as shown for a recombinant C. glutamicum strain overproducing glycerokinase and glycerol facilitator genes from E. coli in media containing glycerol. In this strain, overexpression of gpp restored growth in the presence of glycerol as intracellular glycerol-3-phosphate concentrations were reduced to wild-type levels. In C. glutamicum wild type, GPP was shown to be involved in utilization of DL-glycerol-3-phosphate as source of phosphorus, since growth with DL-glycerol-3-phosphate as sole phosphorus source was reduced in the gpp deletion strain whereas it was accelerated upon gpp overexpression. As GPP homologues were found to be encoded in the genomes of many other bacteria, the gpp homologues of Escherichia coli (b2293) and Bacillus subtilis (BSU09240, BSU34970) as well as gpp1 from the plant Arabidosis thaliana were overexpressed in E. coli MG1655 and shown to significantly increase GPP activity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号