首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ceramide glycosylation potentiates cellular multidrug resistance.
Authors:Y Y Liu  T Y Han  A E Giuliano  M C Cabot
Institution:John Wayne Cancer Institute at Saint John's Health Center, Santa Monica, CA 90404, USA.
Abstract:Ceramide glycosylation, through glucosylceramide synthase (GCS), allows cellular escape from ceramide-induced programmed cell death. This glycosylation event confers cancer cell resistance to cytotoxic anticancer agents Liu, Y. Y., Han, T. Y., Giuliano, A. E., and M. C. Cabot. (1999) J. Biol. Chem. 274, 1140-1146]. We previously found that glucosylceramide, the glycosylated form of ceramide, accumulates in adriamycin-resistant breast carcinoma cells, in vinblastine-resistant epithelioid carcinoma cells, and in tumor specimens from patients showing poor response to chemotherapy. Here we show that multidrug resistance can be increased over baseline and then totally reversed in human breast cancer cells by GCS gene targeting. In adriamycin-resistant MCF-7-AdrR cells, transfection of GCS upgraded multidrug resistance, whereas transfection of GCS antisense markedly restored cellular sensitivity to anthracyclines, Vinca alkaloids, taxanes, and other anticancer drugs. Sensitivity to the various drugs by GCS antisense transfection increased 7- to 240-fold and was consistent with the resumption of ceramide-caspase-apoptotic signaling. GCS targeting had little influence on cellular sensitivity to either 5-FU or cisplatin, nor did it modify P-glycoprotein expression or rhodamine-123 efflux. GCS antisense transfection did enhance rhodamine-123 uptake compared with parent MCF-7-AdrR cells. This study reveals that GCS is a novel mechanism of multidrug resistance and positions GCS antisense as an innovative force to overcome multidrug resistance in cancer chemotherapy.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号