首页 | 本学科首页   官方微博 | 高级检索  
     


An N-terminal EF hand-like motif modulates ion transport by Pmr1, the yeast Golgi Ca(2+)/Mn(2+)-ATPase.
Authors:Y Wei  V Marchi  R Wang  R Rao
Affiliation:Department of Physiology, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, USA.
Abstract:Pmr1, a novel member of the family of P-type ATPases, localizes to the Golgi compartment in yeast where it provides Ca(2+) and Mn(2+) for a variety of normal secretory processes. We have previously characterized Ca(2+) transport in isolated Golgi vesicles, and described an expression system for the analysis of Pmr1 mutants in a yeast strain devoid of background Ca(2+) pump activity [Sorin, A., Rosas, G., and Rao, R. (1997) J. Biol. Chem. 272, 9895-9901]. Here we show, using recombinant bacterial fusions, that an N-terminal EF hand-like motif in Pmr1 binds Ca(2+). Increasing disruptions of this motif led to progressive loss of pump function; thus, the single point mutations D51A and D53A retained pump activity but with drastic reductions in the affinity for Ca(2+) transport, while the double mutant was largely unable to exit the endoplasmic reticulum. In-frame deletions of the Ca(2+)-binding motif resulted in complete loss of function. Interestingly, the single point mutations conferred differential affinities for transport of Ca(2+) and Mn(2+) ions. Further, the proteolytic stability of the catalytic ATP-binding domain is altered by the N-terminal mutations, suggesting an interaction between these two regions of polypeptide. These studies implicate the N-terminal domain of Pmr1 in the modulation of ion transport, and may help elucidate the role of N-terminal metal-binding sites of Cu(2+)-ATPases, defective in Wilson and Menkes disease.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号