首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Shh signaling is essential for rugae morphogenesis in mice
Authors:Jong-Min Lee  Seita Miyazawa  Jeong-Oh Shin  Hyuk-Jae Kwon  Dae-Woon Kang  Byung-Jai Choi  Jae-Ho Lee  Shigeru Kondo  Sung-Won Cho  Han-Sung Jung
Institution:(1) Division in Anatomy and Developmental Biology, Department of Oral Biology, Research Center for Orofacial Hard Tissue Regeneration, Brain Korea 21 Project, Oral Science Research Center, College of Dentistry, Yonsei Center of Biotechnology, Yonsei University, 134 Shinchon-Dong, Seodaemoon-Gu, Seoul, 120-752, Korea;(2) Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan;(3) Department of Pediatric Dentistry, Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Korea
Abstract:Palatal ridges, or rugae palatinae, are corrugated structures observed in the hard palate region. They are found in most mammalian species, but their number and arrangement are species-specific. Nine palatal rugae are found in the mouse secondary palate. Previous studies have shown that epithelial Shh signaling in the palatal ridge plays an important role during rugae development. Moreover, Wnt family members, including LEF1, play a functional role in orofacial morphogenesis. To explore the function of Shh during rugae development, we utilized the maternal transfer of 5E1 (anti-Shh antibody) to mouse embryos. 5E1 induced abnormal rugae patterning characterized by a spotted shape of palatal ridge rather than a stripe. The expression patterns of Shh and Shh-related genes, Sostdc1, Lef1 and Ptch1, were disrupted following 5E1 injection. Moreover, rugae-specific cell proliferation and inter-rugae-specific apoptosis were affected by inhibition of Shh signaling. We hypothesize that the altered gene expression patterns and the change in molecular events caused by the inhibition of Shh signaling may have induced abnormal rugae patterning. Furthermore, we propose a reaction–diffusion model generated by Wnt, Shh and Sostdc1 signaling. In this study, we show that Sostdc1, a secreted inhibitor of the Wnt pathway, is a downstream target of Shh and hypothesize that the interaction of Wnt, Shh and Sostdc1 is a pivotal mechanism controlling the spatial patterning of palatal rugae.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号