首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Altitudinal variation in egg retention and rates of embryonic development in oviparous Zootoca vivipara fits predictions from the cold-climate model on the evolution of viviparity
Authors:T Rodríguez-Díaz  F Braña
Institution:Departamento de Biología de Organismos y Sistemas, área de Zoología, Universidad de Oviedo, Oviedo, Spain; Unidad Mixta de Investigación en Biodiversidad, UO-CSIC-PA, Oviedo, Spain.
Abstract:The evolution of reptilian viviparity is favoured, according to the cold‐climate hypothesis, at high latitudes or altitudes, where egg retention would entail thermal benefits for embryogenesis because of maternal thermoregulation. According to this hypothesis, and considering that viviparity would have evolved through a gradual increase in the extent of intrauterine egg retention, highland oviparous populations are expected to exhibit more advanced embryo development at oviposition than lowland populations. We tested for possible differences in the level of egg retention, embryo development time and thermal biology of oviparous Zootoca vivipara near the extreme altitudinal limits of the species distribution in the north of Spain (mean altitude for lowland populations, 235 m asl.; for highland populations, 1895 m asl.). Altitude influenced neither temperature of active lizards in the field nor temperature selected by lizards in a laboratory thermal gradient, and pregnant females selected lower temperatures in the thermal gradient than did males and nonpregnant females across altitudinal levels. Eggs from highland populations contained embryos more developed at the time of oviposition (Dufaure and Hubert's stages 33–35) than eggs of highland populations (stages 30–34) and partly because of this difference incubation time was shorter for highland embryos. When analysed for clutches from both altitudinal extremes at the same embryonic stage at oviposition (stage 33), again incubation time was shorter for highland populations, indicating genuine countergradient variation in developmental rate. Our results indicate that temperature is an environmental factor affecting the geographical distribution of different levels of egg retention in Z. vivipara, as predicted by the cold‐climate hypothesis on the evolution of viviparity.
Keywords:countergradient variation  egg retention  evolution of viviparity  incubation time  thermal preferences
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号