首页 | 本学科首页   官方微博 | 高级检索  
     


The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway
Authors:Vabulas Ramunas M  Braedel Sibylla  Hilf Norbert  Singh-Jasuja Harpreet  Herter Sylvia  Ahmad-Nejad Parviz  Kirschning Carsten J  Da Costa Clarissa  Rammensee Hans-Georg  Wagner Hermann  Schild Hansjorg
Affiliation:Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany.
Abstract:The heat shock protein Gp96 has been shown to induce specific immune responses. On one hand, this phenomenon is based on the specific interaction with CD91 that mediates endocytosis and results in major histocompatibility complex class I-restricted representation of the Gp96-associated peptides. On the other hand, Gp96 induces activation of professional antigen-presenting cells, resulting in the production of pro-inflammatory cytokines and up-regulation of costimulatory molecules by unknown mechanisms. In this study, we have analyzed the consequences of Gp96 interaction with cells expressing different Toll-like receptors (TLRs) and with bone marrow-derived dendritic cells from mice lacking functional TLR2 and/or TLR4 molecules. We find that the Gp96-TLR2/4 interaction results in activation of nuclear factor kappaB-driven reporter genes and mitogen- and stress-activated protein kinases and induces IkappaBalpha degradation. Bone marrow-derived dendritic cells of C3H/HeJ and more pronounced C3H/HeJ/TLR2(-/-) mice fail to respond to Gp96. Interestingly, activation of bone marrow-derived dendritic cells depends on endocytosis of Gp96 molecules. Our results provide, for the first time, the molecular basis for understanding the Gp96-mediated activation of antigen-presenting cells by describing the simultaneous stimulation of the innate and adaptive immune system. This feature explains the remarkable ability of Gp96 to induce specific immune responses against tumors and pathogens.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号