首页 | 本学科首页   官方微博 | 高级检索  
     


On the eptihermal neutron energy limit for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT): Study and impact of new energy limits
Affiliation:1. Osaka Medical College, Kansai BNCT Medical Center, Osaka, Japan;2. Kyoto University, Institute for Integrated Radiation and Nuclear Science, Osaka, Japan;3. Osaka Medical College Hospital, Central Department of Radiology, Osaka, Japan;1. Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Japan;2. Department of Oral and Maxillofacial Surgery 2, Graduate School of Dentistry, Osaka University, Japan;1. Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón I, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina;2. Comisión Nacional de Energía Atómica (CNEA), Av. General Paz 1499, B1650KNA, San Martín, Buenos Aires, Argentina;3. National Institute of Nuclear Physics (INFN), Unit of Pavia, via A. Bassi 6, 27100 Pavia, Italy;4. University of Pavia, Department of Physics, via A. Bassi 6, 27100 Pavia, Italy;5. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2270, C, Ciudad Autónoma de Buenos Aires, Argentina;6. Laboratorio de Radiopatología, Gerencia de Mediciones y Evaluaciones en protección Radiológica. Autoridad Regulatoria Nuclear (ARN), Av. del Libertador 8250, C1429 BNP Ciudad Autónoma de Buenos Aires, Argentina;7. University of Pavia, Laboratory of Experimental Surgery, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, via Ferrata 9, 27100 Pavia, Italy;8. CERN, 1211 Geneva, Switzerland
Abstract:Background and purpose: Accelerator-Based Boron Neutron Capture Therapy is a radiotherapy based on compact accelerator neutron sources requiring an epithermal neutron field for tumour irradiations. Neutrons of 10 keV are considered as the maximum optimised energy to treat deep-seated tumours. We investigated, by means of Monte Carlo simulations, the epithermal range from 10 eV to 10 keV in order to optimise the maximum epithermal neutron energy as a function of the tumour depth.Methods: A Snyder head phantom was simulated and mono-energetic neutrons with 4 different incident energies were used: 10 eV, 100 eV, 1 keV and 10 keV. 10B capture rates and absorbed dose composition on every tissue were calculated to describe and compare the effects of lowering the maximum epithermal energy. The Therapeutic Gain (TG) was estimated considering the whole brain volume.Results: For tumours seated at 4 cm depth, 10 eV, 100 eV and 1 keV neutrons provided respectively 54%, 36% and 18% increase on the TG compared to 10 keV neutrons. Neutrons with energies between 10 eV and 1 keV provided higher TG than 10 keV neutrons for tumours seated up to 6.4 cm depth inside the head. The size of the tumour does not change these results.Conclusions: Using lower epithermal energy neutrons for AB-BNCT tumour irradiation could improve treatment efficacy, delivering more therapeutic dose while reducing the dose in healthy tissues. This could lead to new Beam Shape Assembly designs in order to optimise the BNCT irradiation.
Keywords:AB-BNCT  Epithermal energy  Biological dose
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号