首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A versatile plasmid architecture for mammalian synthetic biology (VAMSyB)
Abstract:Current molecular cloning strategies generally lack inter-compatibility, are not strictly modular, or are not applicable to engineer multi-gene expression vectors for transient and stable integration. A standardized molecular cloning platform would advance research, for example, by promoting exchange of vectors between groups. Here, we present a versatile plasmid architecture for mammalian synthetic biology, which we designate VAMSyB, consisting of a three-tier vector family. Tier-1 is designed for easy engineering of fusion constructs, as well as easy swapping of genes and modules to tune the functionality of the vector. Tier-2 is designed for transient multi-gene expression, and is constructed by directly transferring the engineered expression cassettes from tier-1 vectors. Tier-3 enables stable integration into a mammalian host cell through viral transduction, transposons, or homology-directed recombination via CRISPR. This VAMSyB architecture is expected to have broad applicability in the field of mammalian synthetic biology. The VAMSyB collection of plasmids will be available through Addgene.
Keywords:Standardized molecular cloning  Sleeping beauty  piggyBac  Lentivirus  CRISPR/Cas9  Synthetic biology
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号