首页 | 本学科首页   官方微博 | 高级检索  
     


Longer electromechanical delay in paretic triceps surae muscles during voluntary isometric plantarflexion torque generation in chronic hemispheric stroke survivors
Affiliation:1. Department of Physiotherapy, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Brazil;2. Rehabilitation Sciences Graduate Program, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Brazil;3. Movement Analysis and Rehabilitation Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Brazil;4. Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy
Abstract:Electromechanical delay (EMD) is the time delay between the onset of muscle activity and the onset of force/joint torque. This delay appears to be linked to muscular contraction efficiency. However, to our knowledge, limited evidence is available regarding the magnitude of the EMD in stroke-impaired muscles. Accordingly, this study aims to quantify the EMD in both paretic and non-paretic triceps surae muscles of chronic hemispheric stroke survivors, and to investigate whether the EMD is related to voluntary force-generating capacity in this muscle group. Nine male chronic stroke survivors were asked to perform isometric plantarflexion contractions at different force levels and at different ankle joint angles ranging from maximum plantarflexion to maximum dorsiflexion. The surface electromyograms were recorded from triceps surae muscles. The longest EMD among triceps surae muscles was chosen as the EMD for each side. Our results revealed that the EMD in paretic muscles was significantly longer than in non-paretic muscles. Moreover, both paretic and non-paretic muscles showed a negative correlation between the EMD and maximum torque-generating capacity. In addition, there was a strong positive relationship between the EMD and shear wave speed in paretic muscles as well as a negative relationship between the EMD and passive ankle joint range of motion. These findings imply that the EMD may be a useful biomarker, in part, associated with contractile and material properties in stroke-impaired muscles.
Keywords:Stroke  Electromyogram  Muscle weakness  Muscular contraction efficiency  Muscle material properties
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号