首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Evaluating the usefulness of the direct density reconstruction algorithm for intensity modulated and passively scattered proton therapy: Validation using an anthropomorphic phantom
Institution:1. Fujita Health University, Faculty of Radiological Technology, School of Health Sciences, 1-98 Dengakugakubo Kutsukake-cho, Toyoake, Aichi 470-1192, Japan;2. Nagoya Proton Therapy Center, Nagoya City University West Medical Center, 1-1-1 Hirate-cho Kita-ku, Nagoya, Aichi 462-8508, Japan;3. Nagoya University Hospital, 65 Tsuruma-cho Shouwa-ku, Nagoya, Aichi 466-8560, Japan
Abstract:PurposeAccurate calculation of the proton beam range inside a patient is an important topic in proton therapy. In recent times, a computed tomography (CT) image reconstruction algorithm was developed for treatment planning to reduce the impact of the variation of the CT number with changes in imaging conditions. In this study, we investigated the usefulness of this new reconstruction algorithm (DirectDensity?: DD) in proton therapy based on its comparison with filtered back projection (FBP).MethodsWe evaluated the effects of variations in the X-ray tube potential and target size on the FBP- and DD-image values and investigated the usefulness of the DD algorithm based on the range variations and dosimetric quantity variations.ResultsFor X-ray tube potential variations, the range variation in the case of FBP was up to 12.5 mm (20.8%), whereas that of DD was up to 3.3 mm (5.6%). Meanwhile, for target size variations, the range variation in the case of FBP was up to 2.2 mm (2.5%), whereas that of DD was up to 0.9 mm (1.4%). Moreover, the variations observed in the case of DD were smaller than those of FBP for all dosimetric quantities.ConclusionThe dose distributions obtained using DD were more robust against variations in the CT imaging conditions (X-ray tube potential and target size) than those obtained using FBP, and the range variations were often less than the dose calculation grid (2 mm). Therefore, the DD algorithm is effective in a robust workflow and reduces uncertainty in range calculations.
Keywords:CT reconstruction algorithm  DirectDensity  Intensity modulated proton therapy  Range verification
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号