首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Artifact quantification of venous stents in the MRI environment: Differences between braided and laser-cut designs
Institution:1. Dept. of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany;2. German Consortium for Translational Cancer Research Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany;3. Alaxo GmbH, Krün, Germany;4. Clinic for Diagnostic and Interventional Radiology, Saarland University Medical Center, Homburg, Saar, Germany;1. Department of Computer Science, Shantou University, Shantou, Guangdong, China;2. College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong, China;1. Institute of Biostructures and Bioimaging, Italian National Research Council, Via T. De Amicis, 95, 80145 Napoli, Italy;2. Department of Advanced Biomedical Sciences, University of Napoli “Federico II”, 80131 Napoli, Italy;3. Department of Electrical Engineering and Information Technology, University of Napoli “Federico II”, 80125 Napoli, Italy;1. S.O.C. Fisica Sanitaria Pistoia-Prato, A.U.S.L. Toscana Centro, Italy;2. Bioinformatics Unit, Hospital of Prato, A.U.S.L. Toscana Centro, Italy;3. U.O.C. Fisica Sanitaria, A.O.U. Careggi, Firenze, Italy;4. S.O.S.A. Fisica Sanitaria, A.O.U. Mayer, Firenze, Italy;5. Department of Medical Physics, P.O. S. Filippo Neri, Roma, Italy;6. S.C. Fisica Sanitaria Firenze-Empoli, A.U.S.L. Toscana Centro, Firenze, Italy;7. Servizio di Fisica Medica, A.O.U. Policlinico di Modena, Modena, Italy;8. Fisica Medica, Azienda USL – IRCCS di Reggio Emilia, Reggio Emilia, Italy;9. S.C. Fisica Sanitaria, A.O.U. Perugia, Perugia, Italy;10. Medical Physics Department, Hospital of Trento, APSS, Trento, Italy;11. Fisica Medica ed Alte Tecnologie, A.O. Ospedali Riuniti Marche Nord, Pesaro, Italy;12. Università degli Studi di Firenze, Firenze, Italy;13. U.O. Radioterapia Oncologica e Fisica Sanitaria, I.R.C.C.S. CROB, Rionero in Vulture (PZ), Italy;14. U.O.D. Fisica Sanitaria, A.O.U. Policlinico Umberto I, Roma, Italy;15. U.O. Fisica Sanitaria, U.L.S.S. 2 Marca Trevigiana, Treviso, Italy;p. U.S.C. Fisica Sanitaria, A.O. Papa Giovanni XXIII, Bergamo, Italy;q. U.O.S.D. Fisica Sanitaria Arezzo, A.U.S.L. Toscana Sud Est, Arezzo, Italy;r. S.O.D. Fisica Sanitaria, A.O.U. Ospedali Riuniti di Ancona, Ancona, Italy;s. U.O. Fisica Sanitaria, Ospedale Policlinico San Martino, Genova, Italy;t. Fisica Sanitaria, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Milano, Italy;u. S.O.C. Fisica Sanitaria, A.S.U.I. Udine S. Maria della Misericordia, Udine, Italy;v. S.C. Laboratorio di Fisica Medica e Sistemi Esperti, Istituto Nazionale Tumori Regina Elena, Roma, Italy;w. U.O.C. Fisica Sanitaria, A.S.S.T. Spedali Civili, Brescia, Italy;x. U.O.C. Fisica Sanitaria, A.O.U. Integrata di Verona, Verona, Italy;y. S.C. Fisica Sanitaria, A.S.S.T. Monza, Monza, Italy;z. U.O.C. Fisica Sanitaria Area Nord, A.U.S.L. Toscana Nord Ovest, Lucca, Italy;11. Servizio Aziendale di Fisica Sanitaria, A.S. dell’Alto Adige, Bolzano, Italy;12. U.O.S.D. Fisica Sanitaria, A.S.L. Viterbo, Viterbo, Italy;13. Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy;14. Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy;15. Università degli Studi di Perugia, Perugia, Italy;16. Unit of Medical Physics, Pisa University Hospital “Azienda Ospedaliero-Universitaria Pisana”, Pisa, Italy;1. Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy;2. Medical Physics, San Raffaele Scientific Institute, Milano, Italy;3. Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy;4. Health Physics Unit, ASST Santi Paolo e Carlo, Milan, Italy;5. Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy;6. Università di Napoli Federico II, Dipartimento di Fisica “Ettore Pancini”, Napoli, Italy;7. Medical Physics Unit, Azienda Ospedaliera Universitaria Integrata – Verona, Italy;8. Unit of Radiation Research, IEO European Institute of Oncology, IRCCS, Milano, Italy;1. Section of Radiotherapy Physics and Engineering, Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden;2. Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden;3. Section of Thoracic Radiology, Department of Radiology, Karolinska University Hospital, Stockholm, Sweden;4. Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden;5. Section of Head, Neck, Lung and Skin Tumours, Department of Cancer, Karolinska University Hospital, Stockholm, Sweden;6. Section of Radiotherapy, Department of Cancer, Karolinska University Hospital, Stockholm, Sweden;7. Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
Abstract:PurposeTo quantify B0- and B1-induced imaging artifacts of braided venous stents and to compare the artifacts to a set of laser-cut stents used in venous interventions.MethodsThree prototypes of braided venous stents with different geometries were tested in vitro. B0 field distortion maps were measured via the frequency shift Δf using multi-echo imaging. B1 distortions were quantified using the double angle method. The relative amplitudes B1rel were calculated to compare the intraluminal alteration of B1. Measurements were repeated with the stents in three different orientations: parallel, diagonal and orthogonal to B0.ResultsAt 1.5 T, the braided stents induced a maximum frequency shift of Δfx<100Hz. Signal voids were limited to a distance of 2 mm to the stent walls at an echo time of 3 ms. No substantial difference in the B0 field distortions was seen between laser-cut and braided venous stents. B1rel maps showed strongly varying distortion patterns in the braided stents with the mean intraluminal B1rel ranging from 63±18% in prototype 1 to 98±38% in prototype 2. Compared to laser-cut stents the braided stents showed a 5 to 9 times higher coefficient of variation of the intraluminal B1rel.ConclusionBraided venous stent prototypes allow for MR imaging of the intraluminal area without substantial signal voids due to B0-induced artifacts. Whereas B1 is attenuated homogeneously in laser-cut stents, the B1 distortion in braided stents is more inhomogeneous and shows areas with enhanced amplitude. This could potentially be used in braided stent designs for intraluminal signal amplification.
Keywords:Magnetic resonance imaging  Venous stents  Magnetic resonance venography  MRI artifacts  RF shielding  Susceptibility induced artifacts  Braided stents  Laser-cut stents
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号