首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The detergent and salt effect on the light-harvesting chlorophyll ab complex from green plants
Authors:MD Il&#x;ina  EA Kotova  AYu Borisov
Institution:A.N. Belozersky Laboratory of Molecular Biology and Bioorganic Chemistry, Moscow State University, Corpus ‘A’, Moscow 117234 U.S.S.R.
Abstract:The light-harvesting accessory pigment-protein complex (LHC) with a chlorophyll (Chl) ab ratio of 1.2 was isolated by treating pea chloroplasts with Triton X-100. The LHC was used to investigate the action of ionic (sodium dodecyl sulfate) and non-ionic (Triton X-100) detergents. By optical methods (absorption and fluorescence spectra, measurements of fluorescence yield, ?, and lifetime, τ) two successive stages of the process were demonstrated, namely (1) interaction between detergent monomers and proteins and (2) solubilization of pigments into detergent micelles, which is facilitated by the presence of salts. The concentration ranges, characteristic of these stages, differ by 1.5–2 orders of magnitude for SDS, but slightly overlap for Triton X-100. At the second stage, certain changes occur in LHC absorption and fluorescence spectra. Several stable states of the LHC were established: (1) an aggregated state formed in the presence of 10 mM MgSO4 with τ ≈ 0.6 ns; (2) the dialyzed LHC with τ ≈ 0.9 ns; (3) the states of the LHC in detergent solution with τ ≈ 2.3, 2.9, 3.4 ns; (4) a 30 kilodalton monomer obtained by SDS-polyacrylamide gel electrophoresis with τ ≈ 4.1 ns. The fluorescence parameters of the LHC states were compared with those of Chl a in detergent micelles (for the micelles τ = 5.6–6.0 ns. The τ? ratio (the criterion for emission heterogeneity) for the LHC in the absence of a detergent was shown to be higher at least by a factor of 3.5 than that for Chl a in the presence of a detergent. Successive additions of the detergent to the LHC cause gradual decrease in the τ? ratio, and for the LHC monomer it reaches practically the same value as for Chl a in detergent micelles. The results are discussed on the basis of the data obtained previously. It is suggested that in vivo LHCs do not form such aggregates as in water solution without a detergent.
Keywords:Fluorescence  Pigment-protein complex  Detergent effect  Light-harvesting complex  Salt effect  (Pea chloroplasts)  LHC  light-harvesting complex  Chl  chlorophyll  SDS  sodium dodecyl sulfate
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号