首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Energy status,growth and nitrogenase activity in continuous cultures of Rhizobium sp. strain CB756 supplied with NH+4 and various rates of aeration
Authors:Te May Ching  Fraser J Bergersen  Graham L Turner
Institution:Division of Plant Industry CSIRO, Canberra, A.C.T., 2601 Australia
Abstract:Continuous cultures of the cowpea-type Rhizobium sp., strain CB756, were grown in the presence of NH+4 at automatically controlled concentrations of dissolved O2 and rates of aeration. Nitrogenase activity of steady-state cultures was only detected under microaeration conditions (dissolved O2 typically <0.03 μM; aeration rate typically 0.6 μmol O2/ml per h), when the cellular ATP pool size was 0.8–1.8 nmol/mg dry wt., (optimum 1.1) and the energy charge 0.6–0.7. At twice this aeration rate and dissolved O2 concentration of about 0.15 μM, the yield of bacteria doubled, the ATP pool increased and energy charge increased to 0.8. With similar rates of O2 supply but high concentration of dissolved O2 (approx. 150 μM), cultures were NH+4-limited and the ATP pool and energy charge were slightly reduced. Amongst all of these O2 supply conditions the total pool of adenosine phosphates was not significantly different (2.6 S.D. 0.7 nmol/mg dry wt.). In steady-state, O2-limited cultures, concentrations of cyclic GMP were higher when nitrogenase was present. When rates of O2 supply to steady-state cultures were changed, oscillations in bacterial energy status and growth rate were induced decreasing in amplitude until a new steady state was reached. This made it difficult to discern precisely the energy status in which nitrogenase activity was derepressed or repressed. However, generally, increases in nitrogenase activity followed decreases in ATP and energy charge and decreased nitrogenase activity accompanied increases in these energy parameters. These results are discussed in relation to the possible involvement of adenylation or deadenylation of glutamine synthetase and to the control of nitrogenase synthesis in the presence of NH+4. It is concluded that the small ATP pool size is responsible for failure of adenylylation of glutamine synthetase and is related to nitrogenase synthesis at microaeration rates.
Keywords:Energy status  Nitrogenase  Continuous culture  Glutamine synthetase  Aeration rate  (Rhizobium)  Hepes  To whom correspondence should be addressed  
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号